We propose a new feature selection strategy based on rough sets and Particle Swarm Optimization (PSO). Rough sets has been used as a feature selection method with much success, but current hill-climbing rough set approaches to feature selection are inadequate at finding optimal reductions as no perfect heuristic can guarantee optimality. On the other hand, complete searches are not feasible for even medium-sized datasets. So, stochastic approaches provide a promising feature selection mechanism. Like Genetic Algorithms, PSO is a new evolutionary computation technique, in which each potential solution is seen as a particle with a certain velocity flying through the problem space. The Particle Swarms find optimal regions of the complex search space through the interaction of individuals in the population. PSO is attractive for feature selection in that particle swarms will discover best feature combinations as they fly within the subset space. Compared with GAs, PSO does not need complex operators such as crossover and mutation, it requires only primitive and simple mathematical operators, and is computationally inexpensive in terms of both memory and runtime. Experimentation is carried out, using UCI data, which compares the proposed algorithm with a GA-based approach and other deterministic rough set reduction algorithms. The results show that PSO is efficient for rough set-based feature selection.
Abstract-Semantics-preserving dimensionality reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encountered in many areas such as machine learning, pattern recognition, and signal processing. This has found successful application in tasks that involve data sets containing huge numbers of features (in the order of tens of thousands), which would be impossible to process further. Recent examples include text processing and Web content classification. One of the many successful applications of rough set theory has been to this feature selection area. This paper reviews those techniques that preserve the underlying semantics of the data, using crisp and fuzzy rough set-based methodologies. Several approaches to feature selection based on rough set theory are experimentally compared. Additionally, a new area in feature selection, feature grouping, is highlighted and a rough set-based feature grouping technique is detailed.
Abstract-In rough set based feature selection, the goal is to omit attributes (features) from decision systems such that objects in different decision classes can still be discerned. A popular way to evaluate attribute subsets with respect to this criterion is based on the notion of dependency degree. In the standard approach, attributes are expected to be qualitative; in the presence of quantitative attributes, the methodology can be generalized using fuzzy rough sets, to handle gradual (in)discernibility between attribute values more naturally. However, both the extended approach, as well as its crisp counterpart, exhibit a strong sensitivity to noise: a change in a single object may significantly influence the outcome of the reduction procedure. Therefore, in this paper, we consider a more flexible methodology based on the recently introduced Vaguely Quantified Rough Set (VQRS) model. The method can handle both crisp (discrete-valued) and fuzzy (real-valued) data, and encapsulates the existing noise-tolerant data reduction approach using Variable Precision Rough Sets (VPRS), as well as the traditional rough set model, as special cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.