Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
The S100 proteins comprise a family of 21 low molecular weight (9-13 kDa) proteins that are characterized by the presence of two calcium-binding EF-hand motifs. Fourteen S100 protein genes are located within the epidermal differentiation complex on human chromosome 1q21 and 13 S100 proteins (S100A2, S100A3, S100A4, S100A6, S100A7, S100A8, S100A9, S100A10, S100A11, S100A12, S100A15, S100B, and S100P) are expressed in normal and/or diseased epidermis. S100 proteins exist in cells as anti-parallel hetero- and homodimers and upon calcium binding interact with target proteins to regulate cell function. S100 proteins are of interest as mediators of calcium-associated signal transduction and undergo changes in subcellular distribution in response to extracellular stimuli. They also function as chemotactic agents and may play a role in the pathogenesis of epidermal disease, as selected S100 proteins are markedly overexpressed in psoriasis, wound healing, skin cancer, inflammation, cellular stress, and other epidermal states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.