Systemically disseminated cutaneous T-cell lymphoma is generally resistant to chemotherapy and radiotherapy. We tested a treatment involving the extracorporeal photoactivation of biologically inert methoxsalen (8-methoxypsoralen) by ultraviolet A energy to a form that covalently cross-links DNA. After oral administration of methoxsalen, a lymphocyte-enriched blood fraction was exposed to ultraviolet A (1 to 2 J per square centimeter) and then returned to the patient. The combination of ultraviolet A and methoxsalen caused an 88 +/- 5 percent loss of viability of target lymphocytes, whereas the drug alone was inactive. Twenty-seven of 37 patients with otherwise resistant cutaneous T-cell lymphoma responded to the treatment, with an average 64 percent decrease in cutaneous involvement after 22 +/- 10 weeks (mean +/- SD). The responding group included 8 of 10 patients with lymph-node involvement, 24 of 29 with exfoliative erythroderma, and 20 of 28 whose disease was resistant to standard chemotherapy. Side effects that often occur with standard chemotherapy, such as bone marrow suppression, gastrointestinal erosions, and hair loss, did not occur. Although the mechanism of the beneficial effect is uncertain, an immune reaction to the infused damaged cells may have restricted the activity of the abnormal T cells. This preliminary study suggests that extracorporeal photochemotherapy is a promising treatment for widespread cutaneous T-cell lymphoma.
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma of skin-homing T lymphocytes. We performed exome and whole genome DNA sequence and RNA sequencing on purified CTCL and matched normal cells. The results implicate mutations in 17 genes in CTCL pathogenesis, including genes involved in T cell activation and apoptosis, NFκB signaling, chromatin remodeling, and DNA damage response. CTCL is distinctive in that somatic copy number variants (SCNVs) comprise 92% of all driver mutations (mean of 11.8 pathogenic SCNVs vs. 1.0 somatic single nucleotide variants per CTCL). These findings have implications for novel therapeutics.
Summary CD8+ T‐cell responses are critical in the immunological control of tumours and infectious diseases. To prime CD8+ T cells against these cell‐associated antigens, exogenous antigens must be cross‐presented by professional antigen‐presenting cells (APCs). While cross‐presentation of soluble antigens by dendritic cells is detectable in vivo, the efficiency is low, limiting the clinical utility of protein‐based vaccinations. To enhance the efficiency of presentation, we generated nanoparticles from a biodegradable polymer, poly(d,l‐lactide‐co‐glycolide) (PLGA), to deliver antigen into the major histocompatibility complex (MHC) class I antigen presentation pathway. In primary mouse bone marrow‐derived dendritic cells (BMDCs), the MHC class I presentation of PLGA‐encapsulated ovalbumin (OVA) stimulated T cell interleukin‐2 secretion at 1000‐fold lower concentration than soluble antigen and 10‐fold lower than antigen‐coated latex beads. The microparticles also served as an intracellular antigen reservoir, leading to sustained MHC class I presentation of OVA for 72 hr, decreasing by only 20% after 96 hr, a time at which the presentation of soluble and latex bead‐associated antigens was undetectable. Cytosol extraction demonstrated that antigen delivery via PLGA particles increased the amount of protein that escaped from endosomes into the cytoplasm, thereby increasing the access of exogenous antigen to the classic MHC class I loading pathway. These data indicate that the unique properties of PLGA particle‐mediated antigen delivery dramatically enhance and sustain exogenous antigen presentation by MHC class I, potentially facilitating the clinical use of these particles in vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.