Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKβ were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects with in vivo applications of gold nanomaterials and underscores the need for more studies evaluating the interactions of nanomaterials with biomolecules and cellular components.
Ras proteins are small GTPases localized to the plasma membrane (PM), which regulate cellular proliferation, apoptosis and differentiation. After a series of post-translational modifications, H-Ras and N-Ras traffic to the PM from the Golgi via the classical exocytic pathway, but the exact mechanism of K-Ras trafficking to the PM from the ER is not fully characterized. ATP5G1 (also known as ATP5MC1) is one of the three proteins that comprise subunit c of the F 0 complex of the mitochondrial ATP synthase. In this study, we show that overexpression of the mitochondrial targeting sequence of ATP5G1 perturbs glucose metabolism, inhibits oncogenic K-Ras signaling, and redistributes phosphatidylserine (PtdSer) to mitochondria and other endomembranes, resulting in K-Ras translocation to mitochondria. Also, it depletes phosphatidylinositol 4-phosphate (PI4P) at the Golgi. Glucose supplementation restores PtdSer and K-Ras PM localization and PI4P at the Golgi. We further show that inhibition of the Golgilocalized PI4-kinases (PI4Ks) translocates K-Ras, and PtdSer to mitochondria and endomembranes, respectively. We conclude that PI4P at the Golgi regulates the PM localization of PtdSer and K-Ras. This article has an associated First Person interview with the first author of the paper.
Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3'Igh regulatory region (3'IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3'IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3'IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3'IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3'IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3'IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3'IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels.
Exposure to nanomaterials (NMs) is inevitable, requiring robust toxicological assessment to understand potential environmental and human health effects. NMs are favored in many applications because of their small size; however, this allows them to easily aerosolize and, subsequently, expose humans via inhalation. Toxicological assessment of NMs by conventional methods in submerged cell culture is not a relevant way to assess inhalation toxicity of NMs because of particle interference with bioassays and changes in particokinetics when dispersed in medium. Therefore, an in vitro aerosol exposure chamber (AEC) was custom designed and used for direct deposition of NMs from aerosols in the environment to the air−liquid interface of lung cells. Human epithelial lung cell line, A549, was used to assess the toxicity of copper, nickel, and zinc oxide nanopowders aerosolized by acoustic agitation in laboratory study. Post optimization, the AEC was used in the field to expose the A549 cells to NM aerosols generated from firing a hand gun and rifle. Toxicity was assessed using nondestructive assays for cell viability and inflammatory response, comparing the biologic effect to the delivered mass dose measured by inductively coupled plasmamass spectrometry. The nanopowder exposure to submerged and ALI cells resulted in dose-dependent toxicity. In the field, weapon exhaust from the M4 reduced cell viability greater than the M9, while the M9 stimulated inflammatory cytokine release of IL-8. This study highlights the use of a portable chamber with the capability to assess toxicity of NM aerosols exposed to air− liquid interface in vitro lung cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.