The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be improved through formulation and delivery approaches. Here, we attached small molecule TLR-7/8a to polymer scaffolds (polymer-TLR-7/8a) and evaluated how varying physicochemical properties of the TLR-7/8a and polymer carrier influenced the location, magnitude and duration of innate immune activation in vivo. Particle formation by polymer-TLR-7/8a was critical for restricting adjuvant distribution and prolonging activity in draining lymph nodes. The improved pharmacokinetic profile by particulate polymer-TLR-7/8a was also associated with reduced morbidity and enhanced vaccine immunogenicity for inducing antibodies and T cell immunity. We extended these findings to the development of a modular platform in which protein antigens are site-specifically linked to temperature-responsive polymer-TLR-7/8a adjuvants that self-assemble into immunogenic particles at physiologic temperatures in vivo. Our findings provide a chemical and structural basis for optimizing adjuvant design to elicit broad-based antibody and T cell responses with protein antigens.
Personalized cancer vaccines (PCVs) targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing PCVs in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform ("SNP-7/8a") based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles that increased uptake by and activation of antigen-presenting cells that promote T cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n=179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in non-human primates. Altogether, SNP-7/8a is a generalizable approach for co-delivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T cell immunity.
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
BackgroundOncolytic viruses are among the most powerful and selective cancer therapeutics under development and are showing robust activity in clinical trials, particularly when administered directly into tumor nodules. However, their intravenous administration to treat metastatic disease has been stymied by unfavorable pharmacokinetics and inefficient accumulation in and penetration through tumors.MethodsAdenovirus (Ad) was “stealthed” with a new N-(2-hydroxypropyl)methacrylamide polymer, and circulation kinetics were characterized in Balb/C SCID mice (n = 8 per group) bearing human ZR-75-1 xenograft tumors. Then, to noninvasively increase extravasation of the circulating polymer-coated Ad into the tumor, it was coinjected with gas microbubbles and the tumor was exposed to 0.5 MHz focused ultrasound at peak rarefactional pressure of 1.2MPa. These ultrasound exposure conditions were designed to trigger inertial cavitation, an acoustic phenomenon that produces shock waves and can be remotely monitored in real-time. Groups were compared with Student t test or one-way analysis of variance with Tukey correction where groups were greater than two. All statistical tests were two-sided.ResultsPolymer-coating of Ad reduced hepatic sequestration, infection (>8000-fold; P < .001), and toxicity and improved circulation half-life (>50-fold; P = .001). Combination of polymer-coated Ad, gas bubbles, and focused ultrasound enhanced tumor infection >30-fold; (4×106 photons/sec/cm2; standard deviation = 3×106 with ultrasound vs 1.3×105; standard deviation = 1×105 without ultrasound; P = .03) and penetration, enabling kill of cells more than 100 microns from the nearest blood vessel. This led to substantial and statistically significant retardation of tumor growth and increased survival.ConclusionsCombining drug stealthing and ultrasound-induced cavitation may ultimately enhance the efficacy of a range of powerful therapeutics, thereby improving the treatment of metastatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.