BackgroundUrban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific Anopheles gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to Anopheles bites. The aim of this study was to use this biomarker to evaluate the human exposure to Anopheles mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where Anopheles biting rates and malaria transmission are supposed to be low.MethodsOne cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district.ResultsConsiderable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to Anopheles gambiae bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and Anopheles mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to Anopheles bites between different exposure groups of districts.ConclusionsSpecific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to Anopheles bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.
Research on health care behaviour in sub-Saharan Africa usually considers the mother as the reference in the household when a child is sick. The study of health care management within the family is a key issue for understanding therapeutic rationales. This study was conducted in the region of Fatick in Senegal among 902 children with malaria-related fever. The data were taken from a retrospective quantitative survey conducted in all compounds of the DSS (Demographic Surveillance Site) of Niakhar. The results show that child care-taking is fundamentally a collective process: in 70.9% of out-of-home resorts, the treatment decision was collective. The health care process of 68.1% of morbid episodes involved several individuals. The involvement of the mother, the father and other relatives in the collective management of health care followed different logics. Each care-giver had a specific and complementary function depending on gender norms, intergenerational relations and characteristics of the family unit. Family management of illness aims at optimizing financial and human resources given the economic, logistical and social constraints on health care. Nevertheless, collective management also favoured home-based care, prevented good treatment compliance and delayed the resort to health facilities. These results suggest that health education campaigns should focus on an early involvement of fathers in health care-giving and also on the strengthening of the autonomy of mothers. Mothers' empowerment should give women more autonomy in their child's treatment choice. Lastly, there is a need to develop community health facilities and establish shared funding at the community level.
IntroductionThe objective of this study was to measure the rate of asymptomatic carriage of plasmodium in the Dakar region two years after the implementation of new strategies in clinical malaria management.MethodologyBetween October and December 2008, 2952 households selected in 50 sites of Dakar area, were visited for interviews and blood sampling. Giemsa-stained thick blood smears (TBS) were performed for microscopy in asymptomatic adult women and children aged 2 to 10 years. To ensure the quality of the microscopy, we performed a polymerase chain reaction (PCR) with real time qPCR in all positive TBS by microscopy and in a sample of negative TBS and filter paper blood spots.ResultsThe analysis has concerned 2427 women and 2231 children. The mean age of the women was 35.6 years. The mean age of the children was 5.4 years. The parasite prevalence was 2.01% (49/2427) in women and 2.15% (48/2231) in children. Parasite prevalence varied from one study site to another, ranging from 0 to 7.41%. In multivariate analysis, reporting a malaria episode in 2008 was associated with plasmodium carriage (OR = 2.57, P = 0.002) in women; in children, a malaria episode (OR = 6.19, P<0.001) and a travel out of Dakar during last 3 months (OR = 2.27, P = 0.023) were associated with plasmodium carriage.Among the positive TBS, 95.8% (93/97) were positive by plasmodium PCR. Among the negative TBS, 13.9% (41/293) were positive by PCR. In blood spots, 15.2% (76/500) were positive by PCR. We estimated at 16.5% the parasite prevalence if PCR were performed in 4658 TBS.ConclusionParasite prevalence in Dakar area seemed to be higher than the rate found by microscopy. PCR may be the best tool for measuring plasmodium prevalence in the context of low transmission. Environmental conditions play a major role in the heterogeneity of parasite prevalence within sites.
Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human–vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.