A method for large eddy simulation (LES) is presented in which the sub-grid-scale modeling is achieved by filtering procedures alone. The procedure derives from a deconvolution model, and provides a mathematically consistent approximation of unresolved terms arising from any type of nonlinearity. The formal steps of primary filtering to obtain LES equations, approximate deconvolution to construct the subgrid model term and regularization are combined into an equivalent filter. This filter should be an almost perfect low pass filter below a cut-off wavenumber and then fall off smoothly. The procedure has been applied to a pressure-velocity-entropy formulation of the Navier–Stokes equations for compressible flow to perform LES of two fully developed, turbulent, supersonic channel flows and has been assessed by comparison against direct numerical simulation (DNS) data. Mach numbers are 1.5 and 3.0, and Reynolds numbers are 3000 and 6000, respectively. Effects of filter cut-off location, choice of differentiation scheme (a fifth-order compact upwind formula and a symmetric sixth-order compact formula were used), and grid refinement are examined. The effects are consistent with, and are readily understood by reference to, filtering characteristics of the differentiation and the LES filter. All simulations demonstrate a uniform convergence towards their respective DNS solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.