Practical components for three-dimensional molecular nanofabrication must be simple to produce, stereopure, rigid, and adaptable. We report a family of DNA tetrahedra, less than 10 nanometers on a side, that can self-assemble in seconds with near-quantitative yield of one diastereomer. They can be connected by programmable DNA linkers. Their triangulated architecture confers structural stability; by compressing a DNA tetrahedron with an atomic force microscope, we have measured the axial compressibility of DNA and observed the buckling of the double helix under high loads.
Many essential cellular processes are carried out by complex biological machines located in the cell membrane. The bacterial flagellar motor is a large membrane-spanning protein complex that functions as an ion-driven rotary motor to propel cells through liquid media. Within the motor, MotB is a component of the stator that couples ion flow to torque generation and anchors the stator to the cell wall. Here we have investigated the protein stoichiometry, dynamics and turnover of MotB with single-molecule precision in functioning bacterial flagellar motors in Escherichia coli. We monitored motor function by rotation of a tethered cell body, and simultaneously measured the number and dynamics of MotB molecules labelled with green fluorescent protein (GFP-MotB) in the motor by total internal reflection fluorescence microscopy. Counting fluorophores by the stepwise photobleaching of single GFP molecules showed that each motor contains approximately 22 copies of GFP-MotB, consistent with approximately 11 stators each containing two MotB molecules. We also observed a membrane pool of approximately 200 GFP-MotB molecules diffusing at approximately 0.008 microm2 s(-1). Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed turnover of GFP-MotB between the membrane pool and motor with a rate constant of the order of 0.04 s(-1): the dwell time of a given stator in the motor is only approximately 0.5 min. This is the first direct measurement of the number and rapid turnover of protein subunits within a functioning molecular machine.
The bacterial flagellar motor is a reversible rotary nano-machine, about 45 nm in diameter, embedded in the bacterial cell envelope. It is powered by the flux of H+ or Na+ ions across the cytoplasmic membrane driven by an electrochemical gradient, the proton-motive force or the sodium-motive force. Each motor rotates a helical filament at several hundreds of revolutions per second (hertz). In many species, the motor switches direction stochastically, with the switching rates controlled by a network of sensory and signalling proteins. The bacterial flagellar motor was confirmed as a rotary motor in the early 1970s, the first direct observation of the function of a single molecular motor. However, because of the large size and complexity of the motor, much remains to be discovered, in particular, the structural details of the torque-generating mechanism. This review outlines what has been learned about the structure and function of the motor using a combination of genetics, single-molecule and biophysical techniques, with a focus on recent results and single-molecule techniques.
The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel many species of swimming bacteria. The rotor is a set of rings up to 45 nm in diameter in the cytoplasmic membrane; the stator contains about ten torque-generating units anchored to the cell wall at the perimeter of the rotor. The free-energy source for the motor is an inward-directed electrochemical gradient of ions across the cytoplasmic membrane, the protonmotive force or sodium-motive force for H+-driven and Na+-driven motors, respectively. Here we demonstrate a stepping motion of a Na+-driven chimaeric flagellar motor in Escherichia coli at low sodium-motive force and with controlled expression of a small number of torque-generating units. We observe 26 steps per revolution, which is consistent with the periodicity of the ring of FliG protein, the proposed site of torque generation on the rotor. Backwards steps despite the absence of the flagellar switching protein CheY indicate a small change in free energy per step, similar to that of a single ion transit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.