Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west‐central Montana using 2 methods: snow back‐tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% CI 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% CI 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance × sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% CI 182–451) to 529 (95% CI 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Mountain lions (Puma concolor) are widely hunted for recreation, population control, and to reduce conflict with humans, but much is still unknown regarding the effects of harvest on mountain lion population dynamics. Whether human hunting mortality on mountain lions is additive or compensatory is debated. Our primary objective was to investigate population effects of harvest on mountain lions. We addressed this objective with a management experiment of 3 years of intensive harvest followed by a 6‐year recovery period. In December 2000, after 3 years of hunting, approximately 66% of a single game management unit within the Blackfoot River watershed in Montana was closed to lion hunting, effectively creating a refuge representing approximately 12% (915 km2) of the total study area (7,908 km2). Hunting continued in the remainder of the study area, but harvest levels declined from approximately 9/1,000 km2 in 2001 to 2/1,000 km2 in 2006 as a result of the protected area and reduced quotas outside. We radiocollared 117 mountain lions from 1998 to 2006. We recorded known fates for 63 animals, and right‐censored the remainder. Although hunting directly reduced survival, parameters such as litter size, birth interval, maternity, age at dispersal, and age of first reproduction were not significantly affected. Sensitivity analysis showed that female survival and maternity were most influential on population growth. Life‐stage simulation analysis (LSA) demonstrated the effect of hunting on the population dynamics of mountain lions. In our non‐hunted population, reproduction (kitten survival and maternity) accounted for approximately 62% of the variation in growth rate, whereas adult female survival accounted for 30%. Hunting reversed this, increasing the reliance of population growth on adult female survival (45% of the variation in population growth), and away from reproduction (12%). Our research showed that harvest at the levels implemented in this study did not affect population productivity (i.e., maternity), but had an additive effect on mountain lion mortality, and therefore population growth. Through harvest, wildlife managers have the ability to control mountain lion populations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.