The antibiotics nitrofurazone and nitrofurantoin are used in the treatment of genitourinary infections and as topical antibacterial agents. Their action is dependent upon activation by bacterial nitroreductase flavoproteins, including the Escherichia coli nitroreductase (NTR). Here we show that the products of reduction of these antibiotics by NTR are the hydroxylamine derivatives. We show that the reduction of nitrosoaromatics is enzyme-catalyzed, with a specificity constant ϳ10,000-fold greater than that of the starting nitro compounds. This suggests that the reduction of nitro groups proceeds through two successive, enzyme-mediated reactions and explains why the nitroso intermediates are not observed. The global reaction rate for nitrofurazone determined in this study is over 10-fold higher than that previously reported, suggesting that the enzyme is much more active toward nitroaromatics than previously estimated. Surprisingly, in the crystal structure of the oxidized NTR-nitrofurazone complex, nitrofurazone is oriented with its amide group, rather than the nitro group to be reduced, positioned over the reactive N5 of the FMN cofactor. Free acetate, which acts as a competitive inhibitor with respect to NADH, binds in a similar orientation. We infer that the orientation of bound nitrofurazone depends upon the redox state of the enzyme. We propose that the charge distribution on the FMN rings, which alters upon reduction, is an important determinant of substrate binding and reactivity in flavoproteins with broad substrate specificity.
ton. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol 287: G1035-G1043, 2004. First published July 15, 2004 doi:10.1152/ ajpgi.00199.2004.-Obesity and type 2 diabetes are associated with nonalcoholic steatohepatitis (NASH), but an obese/diabetic animal model that mimics human NASH remains undefined. We examined the induction of steatohepatitis and liver fibrosis in obese and type 2 diabetic db/db mice in a nutritional model of NASH and determined the relationship of the expressions of osteopontin (OPN) and leptin receptors to the pathogenesis of NASH. db/db mice and the corresponding lean and nondiabetic db/m mice were fed a diet deficient in methionine and choline (MCD diet) or control diet for 4 wk. Leptindeficient obese and diabetic ob/ob mice fed similar diets were used for comparison. MCD diet-fed db/db mice exhibited significantly greater histological inflammation and higher serum alanine aminotransferase levels than db/m and ob/ob mice. Trichrome staining showed marked pericellular fibrosis in MCD diet-fed db/db mice but no significant fibrosis in db/m or ob/ob mice. Collagen I mRNA expression was increased 10-fold in db/db mice, 4-fold in db/m mice, and was unchanged in ob/ob mice. mRNA expressions of OPN, TNF-␣, TGF-, and short-form leptin receptors (Ob-Ra) were significantly increased in db/db mice compared with db/m or ob/ob mice. Parallel increases in OPN and Ob-Ra protein levels were observed in db/db mice. Cultured hepatocytes expressed only Ob-Ra, and leptin stimulated OPN mRNA and protein expression in these cells. In conclusion, our results demonstrate the development of an obese/diabetic experimental model for NASH in db/db mice and suggest an important role for Ob-Ra and OPN in the pathogenesis of NASH. obesity; diabetes; insulin resistance; osteopontin; fibrosis NONALCOHOLIC STEATOHEPATITIS (NASH) is commonly associated with obesity, type 2 diabetes, and the metabolic syndrome (1,41,45,48). However, several studies examining the pathogenesis of NASH have employed lean and nondiabetic strains of mice fed a diet deficient in methionine and choline (MCD diet). We and others have demonstrated that this model produces steatohepatitis and liver fibrosis that is histologically similar to human NASH (11,13,23,25,26,46). In addition, mice lacking methionine adenosyltransferase have been shown to develop steatohepatitis similar to human NASH (31,34,47). The molecular signaling mechanisms that lead to the activation of inflammation and fibrosis in these models of NASH remain poorly defined. Several studies suggest that peroxidative injury may play a role in the development of steatohepatitis in human and in experimental NASH (11,26,47,48). However, we (46) recently assessed oxidative stress during the progression of steatosis to steatohepatitis in MCD diet-fed A/J mice and found that peroxidative injury occurs late in developing steatohepatitis. We have id...
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-alpha, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1-4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-alpha expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-beta and TNF-alpha. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN(-/-) mice when compared with OPN(+/+) mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.
PTA and stenting of the SFA can be performed safely with excellent procedural success rates. Improved patency of these interventions was seen with increased ankle/brachial index and the performance of angioplasty only. Worse patency was seen with TASC C and TASC D lesions. Patency rates were strongly dependent on lesion type, and the results of angioplasty and stenting compared favorably with surgical bypass for TASC A and B lesions.
Intracranial hemorrhage occurs with notable frequency after carotid endarterectomy and accounts for a significant proportion of neurologic morbidity and mortality. Younger patients, hypertensive patients, and patients with severe cerebrovascular occlusive disease appear to be at greatest risk for the complication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.