The characteristic profile of Millennial Generation students, driving many educational reforms, can be challenged by research in a number of fields including cognition, learning style, neurology, and psychology. This evidence suggests that the current aggregate view of the Millennial student may be less than accurate. Statistics show that Millennial students are considerably diverse in backgrounds, personalities, and learning styles. Data are presented regarding technological predilection, multitasking, reading, critical thinking, professional behaviors, and learning styles, which indicate that students in the Millennial Generation may not be as homogenous in fundamental learning strategies and attitudes as is regularly proposed. Although their common character traits have implications for instruction, no available evidence demonstrates that these traits impact their fundamental process of learning. Many curricular strategies have been implemented to address alleged changes in the manner by which Millennial students learn. None has clearly shown superior outcomes in academic accomplishments or developing expertise for graduating students and concerns persist related to the successful engagement of Millennial students in the process of learning. Four factors for consideration in general curricular design are proposed to address student engagement and optimal knowledge acquisition for 21st century learners.
Following inflammation, primary sensory neurons in the dorsal root ganglion (DRG) alter the production of several proteins. Most DRG neurons are glutamatergic, using glutaminase as the enzyme for glutamate production, but little is known about glutaminase following inflammation. In the present study, adjuvant-induced arthritis (AIA) was produced in rats with complete Freund's adjuvant into the hindpaw. At 7 days of AIA, DRG were examined with glutaminase immunohistochemistry, Western blot immunoreactivity, and enzyme activity. Image analysis revealed that glutaminase was elevated most in small-sized neurons (21%) (P < 0.05). Western blot analysis revealed a 19% increase (P < 0.05) in total glutaminase and 21% in mitochondrial glutaminase (P < 0.05). Glutaminase enzyme activity was elevated 29% (P < 0.001) from 2.20 to 2.83 moles/kg/hr. Elevated glutaminase in primary sensory neurons could lead to increased glutamate production in spinal primary afferent terminals contributing to central sensitization or in the peripheral process contributing to peripheral sensitization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.