Neuropathic pain (NeuP) is a syndrome that results from damaged nerves and/or aberrant regeneration. Common etiologies of neuropathy include chronic illnesses and medication use. Chronic disorders, such as diabetes and alcoholism, can cause neuronal injury and consequently NeuP. Certain medications with antineoplastic effects also carry an exquisitely high risk for neuropathy. These culprits are a few of many that are fueling the NeuP epidemic, which currently affects 7%–10% of the population. It has been estimated that approximately 10% and 7% of US adults carry a diagnosis of diabetes and alcohol disorder, respectively. Despite its pervasiveness, many physicians are unfamiliar with adequate treatment of NeuP, partly due to the few reviews that are available that have integrated basic science and clinical practice. In light of the recent Centers for Disease Control and Prevention guidelines that advise against the routine use of μ-opioid receptor-selective opioids for chronic pain management, such a review is timely. Here, we provide a succinct overview of the etiology and treatment options of diabetic and alcohol- and drug-induced neuropathy, three different and prevalent neuropathies fusing the combined clinical and preclinical pharmacological expertise in NeuP of the authors. We discuss the anatomy of pain and pain transmission, with special attention to key ion channels, receptors, and neurotransmitters. An understanding of pain neurophysiology will lead to a better understanding of the rationale for the effectiveness of current treatment options, and may lead to better diagnostic tools to help distinguish types of neuropathy. We close with a discussion of ongoing research efforts to develop additional treatments for NeuP.
Dried kratom leaves are anecdotally used for the treatment of pain, opioid dependence, and alcohol use disorder. We have previously shown that kratom and its natural products (mitragynine) and semi-synthetic analogs (7-hydroxy mitragynine (7OH) and mitragynine pseudoindoxyl) are mu opioid receptor (MOR) agonists that show minimal beta-arrestin2 recruitment. To further investigate the structure activity relationships of G-protein potency, efficacy, and beta-arrestin2 recruitment, we diversified the mitragynine/7OH templates at the C9, -10 and -12 positions of the aromatic ring of the indole moiety. Three lead C9 analogs, synthesized by swapping the 9-methoxy group with varied substituents, namely phenyl (SC11), methyl (SC12), 3-furanyl (SC13), were further characterized using a panel of in vitro and ex vivo electrophysiology assays. All three compounds were partial agonists with lower efficacy than both DAMGO and morphine in heterologous G-protein assays and synaptic physiology. SC11-13 also showed lower recruitment of both β-arrestin subtypes compared to DAMGO, and in assays with limited MOR receptor reserve, the G-protein efficacy of SC11, SC12 and SC13 was comparable to buprenorphine. In mouse models, at equianalgesic doses SC13 showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning. Taken together, these results suggest that MOR agonists with a G-protein efficacy profile similar to buprenorphine can be developed into opioids that are effective analgesics with greatly reduced liabilities.
Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs.
Molecular cloning has identified three opioid receptors: mu (MOR), delta (DOR) and kappa (KOR). Yet, cloning of these receptor types has offered little clarification to the diverse pharmacological profiles seen within the growing number of novel opioid ligands, which has led to the proposal of multiple subtypes. In the present study, utilizing in vitro and in vivo methods including the use of opioid receptor knockout mice, we find that certain antinociceptive effects of the KOR-1 and KOR-2 subtype-selective ligands (+)-(5α,7α,8β)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzene-acetamide (U69, 593) and 4-[(3,4-Dichlorophenyl)acetyl]-3-(1-pyrrolidinylmethyl)-1-piperazine-carboxylic acid methyl ester fumarate (GR89, 696), respectively, are potentiated by antagonism of MOR and DOR receptors. We believe that our findings can be best explained by the existence of KOR-DOR and KOR-MOR heteromers. We only find evidence for the existence of these heteromers in neurons mediating mechanical nociception, but not thermal nociception. These findings have important clinical ramifications as they reveal new drug targets that may provide avenues for more effective pain therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.