Since the male oyster toadfish (Opsanus tau) is more active in sound production than the female, we hypothesized that sonic muscles of the male are biochemically specialized to perform more work. In order to categorize the muscle biochemically and test for sexual differences, we measured the activity of two anaerobic enzymes, 3-phosphoglyceraldehyde dehydrogenase (3PG) and lactic dehydrogenase (LDH), and two aerobic enzymes, malate dehydrogenase (MDH) and glutamic oxaloacetic transaminase (GOT). Males exhibited greater 3PG and GOT activity than females (p less than 0.05). Both MDH and LDH showed little activity in either sex. High 3PG and low LDH levels indicate a sustained level of glycolysis, with pyruvate shuttled into aerobic metabolism, and high GOT activity indicates a high level of aerobic metabolism. From this and other data, we conclude that toadfish sonic muscle can be classified as fast-twitch oxidative glycolytic or fast-twitch fatigue resistant. The endocrine basis for these sexual differences was examined by implanting steroid pellets into ovariectomized females. Testosterone induced a doubling of 3PG activity (p less than 0.02), and dihydrotestosterone induced an eight-fold increase (p less than 0.0005) in GOT concentration over controls. The steroids had no effect on LDH and MDH activities. Hormones, therefore, trigger one of the fundamental sexual differences underlying toadfish communication, namely a difference in metabolism, providing the male with the capacity for increased sound production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.