Numerical solutions for steady inviscid flows in conventional converging–diverging nozzles are obtained. The fluids considered are Bethe–Zel’dovich–Thompson fluids, i.e., those having specific heats so large that the fundamental derivative of gas dynamics is negative over a finite range of pressures and temperatures. Three general classes of flow are delineated which include two nonclassical types in addition to the usual classical flows; the latter are qualitatively similar to those of perfect gases. The nonclassical flows are characterized by isentropes containing as many as three sonic points. Numerical solutions depicting finite-strength expansion shocks, steady flows with shock waves standing upstream of the nozzle throat, and steady flows containing as many as three shock waves are presented. Flows having arbitrarily large-exit Mach numbers are found to be possible only if a sonic expansion shock is formed in the nozzle. This observation contrasts with prediction based on the perfect gas theory which states that the occurrence of shock waves always results in a subsonic exit flow.
In a complex environment such as an urban area, accurate prediction of the atmospheric dispersion of airborne harmful materials such as radioactive substances is necessary for establishing response actions and assessing risk or damage. Given the variety of urban atmospheric dispersion models available, evaluation and inter-comparison exercises are vital for assessing quantitatively and qualitatively their capabilities and differences. To that end, the European Commission/Directorate General Joint Research Centre with support from the European Commission/Directorate General-Migration and Home Affairs, and with the contribution of the U.S. Defense Threat Reduction Agency, launched the Urban Dispersion INternational Evaluation Exercise (UDINEE) project. Within UDINEE, nine atmospheric dispersion models are evaluated and intercompared. Sulphur hexafluoride concentrations from puffs released near the ground during the Joint Urban 2003 (JU2003) field experiment are used in UDINEE to evaluate atmospheric dispersion models. The JU2003 experiment is chosen because UDINEE aims at the better understanding of modelling capabilities for radiological dispersal devices in urban areas, and the neutrally-buoyant puff releases performed in the JU2003 experiment are the closest scenario to this purpose. The present study evaluates the capability of models at simulating the presence and concentration levels of the tracer at sampling locations. The fraction of predicted concentrations and time-integrated concentrations within a factor-of-two of observations are less than 0.36 and 0.4 respectively. The analysis reveals an improvement in the performance of models by using time-varying inflow conditions. Since the simulation of the dispersion of puff release is particularly challenging, the results of UDINEE could constitute a benchmark for future model developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.