BackgroundCardiovascular magnetic resonance (CMR) is regarded as the gold standard for clinical assessment of the aorta, but normal dimensions are usually referenced to echocardiographic and computed tomography data and no large CMR normal reference range exists. As a result we aimed to 1) produce a normal CMR reference range of aortic diameters and 2) investigate the relationship between regional aortic size and body surface area (BSA) in a large group of healthy subjects with no vascular risk factors.Methods447 subjects (208 male, aged 19–70 years) without identifiable cardiac risk factors (BMI range 15.7–52.6 kg/m2) underwent CMR at 1.5 T to determine aortic diameter at three levels: the ascending aorta (Ao) and proximal descending aorta (PDA) at the level of the pulmonary artery, and the abdominal aorta (DDA), at a level 12 cm distal to the PDA. In addition, 201 of these subjects had aortic root imaging, allowing for measurements at the level of the aortic valve annulus (AV), aortic sinuses and sinotubular junction (STJ).ResultsNormal diameters (mean ±2 SD) were; AV annulus male(♂) 24.4 ± 5.4, female (♀) 21.0 ± 3.6 mm, aortic sinus♂32.4 ± 7.7, ♀27.6 ± 5.8 mm, ST-junction ♂25.0 ± 7.4, ♀21.8 ± 5.4 mm, Ao ♂26.7 ± 7.7, ♀25.5 ± 7.4 mm, PDA ♂20.6 ± 5.6, +18.9 ± 4.0 mm, DDA ♂17.6 ± 5.1, ♀16.4 ± 4.0 mm. Aortic root and thoracic aortic diameters increased at all levels measured with BSA. No gender difference was seen in the degree of dilatation with increasing BSA (p > 0.5 for all analyses).ConclusionAcross both genders, increasing body size is characterized by a modest degree of aortic dilatation, even in the absence of traditional cardiovascular risk factors.
In the absence of traditional cardiovascular risk factors, obese men show predominantly concentric hypertrophy, whereas obese women exhibit both eccentric and concentric hypertrophy. As concentric hypertrophy is more strongly related to cardiovascular mortality than eccentric hypertrophy, our observations may explain the observed gender difference in obesity-related mortality.
BackgroundYoung females exhibit lower cardiovascular event rates that young men, a pattern which is lost, or even reversed with advancing age. As aortic stiffness is a powerful risk factor for cardiovascular events, a gender difference with advancing age could provide a plausible explanation for this pattern.Methods777 subjects (♀n = 408, ♂n = 369) across a wide range of age (21–85 years) underwent cardiovascular magnetic resonance to assess aortic pulse wave velocity (PWV) and, in addition, aortic distensibility at three levels; 1) ascending aorta (Ao) and 2) proximal descending aorta (PDA) at the level of the pulmonary artery and 3) the abdominal aorta (DDA).ResultsThere was a strong negative correlation between increasing age and regional aortic distensibility (Ao♀R-0.84, ♂R-0.80, PDA♀R-0.82, ♂R-0.77, DDA♀R-0.80, ♂R-0.71 all p < 0.001) and a strong positive correlation with PWV, (♀R0.53, ♂R 0.63 both p < 0.001). Even after adjustment for mean arterial pressure, body mass index, heart rate, smoking and diabetes, females exhibited a steeper decrease in all distensibility measures in response to increasing age (Ao♀-1.3 vs ♂-1.1 mmHg-1, PDA ♀-1.2 vs ♂-1.0 mmHg, DDA ♀-1.8 vs ♂-1.4 mmHg-1 per 10 years increase in age all p < 0.001). No gender difference in PWV increase with age was observed (p = 0.11).ConclusionAlthough advancing age is accompanied by increased aortic stiffness in both males and females, a significant sex difference in the rate of change exists, with females showing a steeper decline in aortic elasticity. As aortic stiffness is strongly related to cardiovascular events our observations may explain the increase in cardiovascular event rates that accompanies the menopausal age in women.
One of the potential reasons for the underinvestigation of RV remodeling in obesity lies in the fact that accurate 2-dimensional echocardiographic assessment of RV size and function is inherently more difficult as a result of the complexity of the shape of the RV, which, in contrast to the ellipsoidal shape of the LV, seems triangular, when viewed from the side, and crescentic, when viewed from above. This is hampered further by the increased difficulty of generating adequate acoustic windows in obesity. Despite these limitations, the majority of these studies have shown RV hypertrophy in obesity. [5][6][7][8] A few previous studies investigating RV geometry in obesity, have, in the main, not excluded subjects with obesityrelated comorbidities, such as hypertension, 9 which are known to have independent effects on RV mass.5 In contrast to echocardiography, cardiovascular magnetic resonance imaging is Background-As right ventricular (RV) remodeling in obesity remains underinvestigated, and the impact of left ventricular (LV) diastolic dysfunction on RV hypertrophy is unknown, we aimed to investigate whether (1) sex-specific patterns of RV remodeling exist in obesity and (2) LV diastolic dysfunction in obesity is related to RV hypertrophy. Methods and Results-Seven hundred thirty-nine subjects (women, n=345; men, n=394) without identifiable cardiovascular risk factors (body mass index [BMI], 15.3-59.2 kg/m 2 ) underwent cardiovascular magnetic resonance (1.5 T) to measure RV mass (g), RV end-diastolic volume (mL), RV mass/volume ratio, and LV diastolic peak filling rate (mL/s). All subjects were normotensive (average, 119±11/73±8 mm Hg), normoglycaemic (4.8±0.5 mmol/L), and normocholesterolaemic (4.8±0.9 mmol/L) at the time of scanning. Across both sexes, there was a moderately strong positive correlation between BMI and RV mass (men, +0.8 g per BMI point increase; women, +1.0 g per BMI point increase; both P<0.001). Whereas women exhibited RV cavity dilatation (RV end-diastolic volume, +1.0 mL per BMI point increase; P<0.001), BMI was not correlated with RV end-diastolic volume in men (R=0.04; P=0.51). Concentric RV remodeling was present in both sexes, with RV mass/volume ratio being positively correlated to BMI (men, R=0.41; women, R=0.51; both P<0.001
ObjectivesThe electrocardiogram (ECG) is the most commonly used tool to screen for left ventricular hypertrophy (LVH), and yet current diagnostic criteria are insensitive in modern increasingly overweight society. We propose a simple adjustment to improve diagnostic accuracy in different body weights and improve the sensitivity of this universally available technique.MethodsOverall, 1295 participants were included—821 with a wide range of body mass index (BMI 17.1–53.3 kg/m2) initially underwent cardiac magnetic resonance evaluation of anatomical left ventricular (LV) axis, LV mass and 12-lead surface ECG in order to generate an adjustment factor applied to the Sokolow–Lyon criteria. This factor was then validated in a second cohort (n=520, BMI 15.9–63.2 kg/m2).ResultsWhen matched for LV mass, the combination of leftward anatomical axis deviation and increased BMI resulted in a reduction of the Sokolow–Lyon index, by 4 mm in overweight and 8 mm in obesity. After adjusting for this in the initial cohort, the sensitivity of the Sokolow–Lyon index increased (overweight: 12.8% to 30.8%, obese: 3.1% to 27.2%) approaching that seen in normal weight (37.8%). Similar results were achieved in the validation cohort (specificity increased in overweight: 8.3% to 39.1%, obese: 9.4% to 25.0%) again approaching normal weight (39.0%). Importantly, specificity remained excellent (>93.1%).ConclusionsAdjusting the Sokolow–Lyon index for BMI (overweight +4 mm, obesity +8 mm) improves the diagnostic accuracy for detecting LVH. As the ECG, worldwide, remains the most widely used screening tool for LVH, implementing these findings should translate into significant clinical benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.