The ability of Borrelia burgdorferi to attach to and invade human fibroblasts was investigated by scanning electron and confocal microscopy. By scanning electron microscopy, B. burgdorferi were tightly adherent to fibroblast monolayers after 24-48 h but were eliminated from the cell surface by treatment with ceftriaxone (1 microgram/mL) for 5 days. Despite the absence of visible spirochetes on the cell surface after antibiotic treatment, viable B. burgdorferi were isolated from lysates of the fibroblast monolayers. B. burgdorferi were observed in the perinuclear region within human fibroblasts by laser scanning confocal microscopy. Intracellular spirochetes specifically labeled with monoclonal anti-flagellin antibody were also identified by fluorescent laser scanning confocal microscopy. These observations suggest that B. burgdorferi can adhere to, penetrate, and invade human fibroblasts in organisms that remain viable.
Many bacteria that spread in the skin produce enzymes that digest extracellular matrix components. Borrelia burgdorferi spreads from a skin inoculation site to form the characteristic erythema migrans skin lesion. It was determined that B. burgdorferi does not produce collagenase, elastase, hyaluronidase, or other enzymes that digest extracellular matrix components. However, B. burgdorferi bound human plasmin, plasminogen (Pgn), and urokinase-type plasminogen activator (uPA). When spirochetes were sequentially incubated with Pgn and uPA, bioactive plasmin was generated on the surface of B. burgdorferi. B. burgdorferi did not produce an endogenous Pgn activator. Fluorochrome-conjugated uPA and Pgn colocalized to the terminus of the spirochete. In a mouse model, uPA-treated B. burgdorferi were more infectious than control spirochetes. Binding of host uPA and Pgn to form a bioactive extracellular matrix protease on B. burgdorferi represents a mechanism that could facilitate dissemination and localization of spirochetes to sites of vascular injury.
The Borrelia burgdorferi genome encodes five orthologues of the substrate binding protein oligopeptide permease A (OppA). It was previously shown that these genes are under the control of separate promoters and are differentially expressed under various environmental conditions. We were interested in determining whether there are also differences in substrate specificities among the proteins. The substrate specificities of recombinant proteins were determined by screening for high-affinity peptides by use of a combinatorial phage display heptapeptide library. Different heptapeptides with high affinities for OppA-1, OppA-2, and OppA-3 were identified. No heptapeptide binding OppA-4 or OppA-5 could be identified. Competitive binding assays were performed under various conditions to determine the substrate preferences of the OppA proteins. OppA-1 retained maximal activity over a broad range of pHs (5.5 to 7.5), whereas OppA-2 and OppA-3 showed peak activities at pHs below 5.5. OppA-1 and OppA-2 showed preferences for tripeptides over dipeptides and longer-chain peptides. Although a wide variety of amino acyl side chains were tolerated by all three OppA proteins, OppA-1 showed the broadest substrate specificity and was able to accommodate peptides composed of bulky hydrophobic residues; OppA-2 and OppA-3 showed preferences for peptides composed of small nonpolar amino acids. All three OppA proteins showed preferences for peptides composed of L-rather than D-amino acids. OppA-3 showed the greatest tolerance for changes in stereochemistry. Substantial differences in the substrate specificities of the OppA proteins of B. burgdorferi suggest that they may have distinct functions in the organism.
Bacterial sepsis is a frequent complication in patients with cancer who are receiving high doses of interleukin-2. We evaluated the function of neutrophils from such patients to determine whether there was any abnormality in this form of host defense. Before interleukin-2 therapy, neutrophils from 31 patients with metastatic cancer were normal in assays of random migration and chemotaxis. Superoxide production, phagocytosis, secretion of granule proteins, and bactericidal activity were also normal. Neutrophils from the patients near the end of the first course of interleukin-2 had severely impaired chemotaxis in response to a formylated peptide stimulus (mean [+/- SEM], 49.6 +/- 7.4 percent of base line; P less than 0.001). The detect in chemotaxis improved 5 to 10 days after patients completed the first course of interleukin-2 therapy but recurred toward the end of the second course of such therapy (35.3 +/- 6.9 percent of base line; P less than 0.001). The chemotactic response to a second stimulus (zymosan-activated serum) was also abnormal, but random migration, superoxide production, bactericidal activity, and the secretion of neutrophil granule constituents remained normal or increased throughout treatment with interleukin-2. We conclude that patients who receive interleukin-2 immunotherapy acquire an acute, profound, and reversible defect in neutrophil chemotaxis that may contribute to the high morbidity resulting from bacterial infections in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.