Your article is protected by copyright and all rights are held exclusively by Forum D'Analystes, Chennai. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
The Jacobi coefficients c j (α, β) (1 ≤ j ≤ , α, β > −1) are linked to the Maclaurin spectral expansion of the Schwartz kernel of functions of the Laplacian on a compact rank one symmetric space. It is proved that these coefficients can be computed by transforming the even derivatives of the the Jacobi polynomials P (α,β) k (k ≥ 0, α, β > −1) into a spectral sum associated with the Jacobi operator. The first few coefficients are explicitly computed and a direct trace interpretation of the Maclaurin coefficients is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.