Interest in additive manufacturing (AM) has dramatically expanded in the last several years, owing to the paradigm shift that the process provides over conventional manufacturing. Although the vast majority of recent work in AM has focused on three-dimensional printing in polymers, AM techniques for fabricating metal alloys have been available for more than a decade. Here, laser deposition (LD) is used to fabricate multifunctional metal alloys that have a strategically graded composition to alter their mechanical and physical properties. Using the technique in combination with rotational deposition enables fabrication of compositional gradients radially from the center of a sample. A roadmap for developing gradient alloys is presented that uses multi-component phase diagrams as maps for composition selection so as to avoid unwanted phases. Practical applications for the new technology are demonstrated in low-coefficient of thermal expansion radially graded metal inserts for carbon-fiber spacecraft panels.
Over the 2010s technological improvements allowed metal additive manufacturing to graduate from a prototyping tool to a widespread, full-scale manufacturing process. Among the capabilities still under development, however, is the ability to locally tailor alloy composition and properties to fabricate bulk, complex geometry functionally graded materials (FGMs), eliminating the need for dissimilar-metal welds and joints. The challenge of compositional grading involves overcoming chemical, metallurgical, and thermal property differences to achieve a continuous structure between a wide range of selected combinations of alloys. In this review, examples are discussed of fabricating FGMs joining a variety of combinations of stainless, nickel, titanium and copper alloys, and FGMs joining metals to ceramics and metalmatrix composites. The change in design strategy enabled by practical FGMs may lead to effective use of biomimetic designs that are both much more efficient as well as aesthetically pleasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.