Reflection seismic data can be imaged by migrating common midpoint slant stacks. The basic method is to assemble slant stack sections from the slant stack of each common midpoint gather at the same ray parameter. Earlier investigators have described migration methods for slant stacked shot profiles or common receiver gathers instead of common midpoint gathers. However, common midpoint slant stacks enjoy the practical advantages of midpoint coordinates. In addition, the migration equation makes no approximation for steep dips, wide offsets, or vertical velocity variations. A theoretical disadvantage is that there is no exact treatment of lateral velocity variations. Slant stack migration is a method of “migration before stack.” It solves the dip selectivity problem of conventional stacking, particularly when horizontal reflectors intersect steep dipping reflectors. The correct handling of all dips also improves lateral resolution in the image. Slant stack migration provides a straightforward method of measuring interval velocity after migration has improved the seismic data. The kinematics (traveltime treatment) of slant stack migration is also accurate for postcritical reflections and refractions. These events transform into a p-τ surface with the additional dimension of midpoint. The slant stack migration equation converts the p-τ surface into a depth‐midpoint velocity surface. As with migration in general, the effects of dip are automatically accounted for during velocity inversion.
The well known Wiechert-Herglotz technique for computing a velocity-depth profile from refraction seismograms uses data in the form of ray parameter as a function of intercept time (a p-τ curve). The technique of slant stacking used by reflection seismologists automatically produces a p-τ curve from a common shot profile, thereby bypassing arbitrary travel-time picking and several intermediate calculations of previous methods. Successful preliminary results are presented for both synthetic and real data. This method deteriorates for widely separated geophones and where a number of apparent sources with low inter-source coherency coexist in a single profile, but is capable of completely sorting out triplications in data with less extreme contrasts without human intervention.
On‐line movies are an exciting way to view reflection seismic data. We make a movie by slicing through a three‐dimensional (3-D) seismic data cube in a selected direction (Figure 1). By sweeping through the data fast enough, it is possible to get another perspective of what is going on in the data than by examining still frames. By twiddling various knobs and buttons, we can zoom onto a zone of interest, magnify it, rotate it, and change the color to emphasize a feature of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.