The availability of asteroid spectral measurements extending to the near-infrared, resulting from the development of new telescopic instruments (such as SpeX; Rayner 2003), provides a new basis for classifying asteroid reflectance spectra. We present an asteroid taxonomy classification system based on reflectance spectrum characteristics for 371 asteroids measured over the wavelength range 0.45 to 2.45 microns.This system of 24 classes is constructed using principal component analysis, following most closely the visible wavelength taxonomy of Bus (1999), which itself builds upon the system of Tholen (1984)
For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters = 10 kilometers) main-belt asteroids that have distinctive optical reflectance spectral features similar to those of Vesta and eucrite and diogenite meteorites. Twelve have orbits that are similar to Vesta's and were previously predicted to be dynamically associated with Vesta. Eight bridge the orbital space between Vesta and the 3:1 resonance, a proposed source region for meteorites. These asteroids are most probably multikilometer-sized fragments excavated from Vesta through one or more impacts. The sizes, ejection velocities of 500 meters per second, and proximity of these fragments to the 3:1 resonance establish Vesta as a dynamically viable source for eucrite, diogenite, and howardite meteorites.
We present new visible and near-infrared spectroscopic measurements for 252 near-Earth (NEO) and Mars-crossing (MC) objects observed from 1994 through 2002 as a complement to the Small Main-Belt Asteroid Spectroscopic Survey (SMASS, http://smass.mit.edu/). Combined with previously published SMASS results, we have an internally consistent data set of more than 400 of these objects for investigating trends related to size, orbits, and dynamical history. These data also provide the basis for producing a bias-corrected estimate for the total NEO population (Stuart and Binzel, 2004, Icarus 170, 295-311). We find 25 of the 26 Bus (1999, PhD thesis) taxonomic types are represented, with nearly 90% of the objects falling within the broad S-, Q-, X-, and C-complexes. Rare A-and E-types are more common in the MC than NEO population (about 5% compared to < 1%) and may be direct evidence of slow diffusion into MC orbits from the Flora and Hungaria regions, respectively. A possible family of MC objects (C-types) may reside at the edge of the 5:2 jovian resonance. Distinct signatures are revealed for the relative contributions of different taxonomic types to the NEO population through different source regions. E-types show an origin signature from the inner belt, C-types from the mid to outer belt, and P-types from the outer belt. S-and Q-types have effectively identical main-belt source region profiles, as would be expected if they have related origins. A lack of V-types among Mars-crossers suggests entry into NEO space via rapid transport through the ν6 and 3:1 resonances from low eccentricity main-belt orbits, consistent with a Vesta origin. D-types show the strongest signature from Jupiter family comets (JFC), with a strong JFC component also seen among the X-types. A distinct taxonomic difference is found with respect to the jovian Tisserand parameter T , where C-, D-, and X-type (most likely low albedo P-class) objects predominate for T 3. These objects, which may be extinct comets, comprise 4% of our observed sample, but their low albedos makes this magnitude limited fraction under-representative of the true value. With our taxonomy statistics providing a strong component to the diameter limited bias correction analysis of Stuart (2003, PhD thesis), we estimate 10-18% of the NEO population above any given diameter may be extinct comets, taking into account asteroids scattered into T < 3 orbits and comets scattered into T > 3 orbits. In terms of possible space weathering effects, we see a size-dependent transition from ordinary chondrite-like (Q-type) objects to S-type asteroids over the size range of 0.1 to 5 km, where the transition is effectively complete at 5 km. A match between the average surface age of 5 km asteroids and the rate of space weathering could constrain models for both processes. However, space weathering may proceed at a very rapid rate compared with collisional timescales. In this case, the presence or absence of a regolith may be the determining factor for whether or not an object appears "...
The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on Jan. 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in August 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennus resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.Comment: 89 pages, 39 figures, submitted to Space Science Reviews - OSIRIS-REx special issu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.