Given the natural history of these inaccessible lesions and the high risks of surgery, we conclude that heavy-charged-particle radiation is an effective therapy for symptomatic, surgically inaccessible intracranial arteriovenous malformations. The current procedure has two disadvantages: a prolonged latency period before complete obliteration of the vascular lesion and a small risk of serious neurologic complications.
Treatment of pediatric AVMs with multimodality therapy can substantially improve obliteration rates and may decrease AVM hemorrhage rates. The poor natural history and risks of intervention must be carefully considered when deciding to treat high-grade pediatric AVMs.
Aneurysms associated with AVMs are at risk for rupture before, during, and immediately after treatment of the AVMs. New aneurysms may arise in patients with high-flow AVMs. The risk of intracranial hemorrhage from either source is higher in female patients. To reduce the complications of intracranial hemorrhage in these patients, we recommend a management protocol designed to treat the aneurysms by surgical or endovascular means before administering definitive therapy for the AVMs. Meticulous intraoperative blood pressure control and fluid management during aneurysm surgery is critical to avoid hemorrhage from the AVMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.