A new procedure for the photoredox-mediated conjugate addition of radicals that can be conveniently generated from α-amino acids to DNA-tagged Michael acceptors and styrenes is presented. This C(sp )-C(sp ) coupling tolerates a broad array of structurally diverse radical precursors, including all of the 20 proteinogenic amino acids. Importantly, this reaction proceeds under mild conditions and in DNA-compatible aqueous media. Furthermore, the presented reaction conditions are compatible with DNA, making this reaction platform well suited for the construction of DNA-encoded libraries. The scope and limitations of the chemistry are discussed herein along with proposals for how this methodology might be used to construct DNA-encoded libraries.
A versatile strategy for C7-selective boronation of tryptophans, tryptamines, and 3-alkylindoles, by way of a single-pot C2/C7-diboronation–C2-protodeboronation sequence is described. The combination of a mild iridium-catalyzed C2/C7-diboronation followed by an in situ palladiumcatalyzed C2-protodeboronation allows efficient entry to valuable C7-boroindoles that enable further C7-derivatization. The versatility of the chemistry is highlighted by the gram-scale synthesis of C7-boronated N-Boc-L-tryptophan methyl ester and the rapid synthesis of C7-halo, C7-hydroxy, and C7-aryl tryptophan derivatives.
A new catalytic manifold that merges photoredox with nickel catalysis in aqueous solution is presented. Specifically, the combination of a highly active, yet air-stable, nickel precatalyst with a new electron-deficient pyridyl carboxamidine ligand was key to the development of a water-compatible nickel catalysis platform, which is a crucial requirement for the preparation of DNA-encoded libraries (DELs). Together with an iridium-based photocatalyst and a powerful light source, this dual catalysis approach enabled the efficient decarboxylative arylation of α-amino acids with DNA-tagged aryl halides. This C(sp 2 )−C(sp 3 ) coupling tolerates a wide variety of functional groups on both the amino acid and the aryl halide substrates. Due to the mild and DNA-compatible reaction conditions, the presented transformation holds great potential for the construction of DELs. This was further evidenced by showing that well plate-compatible LED arrays can serve as competent light sources to facilitate parallel synthesis. Lastly, we demonstrate that this procedure can serve as a blueprint toward the adaptation of other established nickel metallaphotoredox transformations to the idiosyncratic requirements of a DEL.
The concise, enantioselective total syntheses of (+)-asperazine (1), (+)-iso-pestalazine A (2), and (+)-pestalazine A (3) have been achieved by the development of a late-stage C3–C8′ Friedel-Crafts union of polycyclic diketopiperazines. Our modular strategy enables the union of complex polycyclic diketopiperazines in virtually their final forms, thus providing rapid and highly convergent assembly at the challenging quaternary stereocenter of these dimeric alkaloids. The significance of this carbon–carbon bond formation can be gauged by the manifold constraints that were efficiently overcome, namely the substantial steric crowding at both reactive sites, the nucleophilic addition of C8′ over N1′ to the C3 carbocation, and the multitude of reactivity posed by the use of complex diketopiperazine fragments in the coupling event. The success of the indoline π-nucleophile that evolved through our studies is notable given the paucity of competing reaction pathways observed in the presence of the highly reactive C3 carbocation generated. This first total synthesis of (+)-pestalazine A also allowed us to revise the molecular structure for this natural alkaloid.
A variety of alpha-substituted butenolides were efficiently prepared from 3-bromo-2-triisopropylsilyloxyfuran via lithium-bromine exchange and in situ quench with carbon or heteroatom electrophiles. The inherent flexibility of this methodology is illustrated by a short and efficient synthesis of an anti-inflammatory marine natural product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.