Abstract. Magnesium diboride bulk pellets were fabricated from pre-reacted MgB 2 powder ball milled with different amounts of exposure to air. Evidence of increased electron scattering including increased resistivity, depressed T c , and enhanced H c2 of the milled and heat treated samples were observed as a result of increased contact with air. These and other data were consistent with alloying with carbon as a result of exposure to air. A less clear trend of decreased connectivity associated with air exposure was also observed. In making the case that exposure to air should be considered a doping process, these results may explain the wide variability of "undoped" MgB 2 properties extant in the literature.
Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering an energy density per cycle up to two orders of magnitude larger than resonant cantilever piezoelectric type generators. This was achieved in a [011] oriented and poled domain engineered relaxor ferroelectric single crystal, mechanically biased to a state just below the ferroelectric rhombohedral (F R )-ferroelectric orthorhombic (F O ) phase transformation. Therefore, a small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. This idea was extended in the present work to design a non-resonant, multi-domain magnetoelectric composite hybrid harvester comprised of highly magnetostrictive alloy, [Fe 81.4 Ga 18.6 (Galfenol) or Tb x Dy 1´x Fe 2 (Terfenol-D)], and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small magnetic field applied to the coupled device causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. We have demonstrated high energy conversion in this magnetoelectric device by triggering the F R -F O transition in the single crystal by a small ac magnetic field in a broad frequency range that is important for multi-domain hybrid energy harvesting devices.
Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]C-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.