We survey both old and new developments in the theory of algorithms in real algebraic geometry -starting from effective quantifier elimination in the first order theory of reals due to Tarski and Seidenberg, to more recent algorithms for computing topological invariants of semi-algebraic sets. We emphasize throughout the complexity aspects of these algorithms and also discuss the computational hardness of the underlying problems. We also describe some recent results linking the computational hardness of decision problems in the first order theory of the reals, with that of computing certain topological invariants of semi-algebraic sets. Even though we mostly concentrate on exact algorithms, we also discuss some numerical approaches involving semi-definite programming that have gained popularity in recent times.
Contents
The use of general descriptive names, registered names. trademarks, etc. in this publication does not inlply. even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.