Half-sandwich ruthenium, rhodium and iridium complexes (1-12) were synthesized with aldoxime (L1), ketoxime (L2) and amidoxime (L3) ligands. Ligands have the general formula [PyC(R)NOH], where R = H (L1), R = CH 3 (L2) and R = NH 2 (L3). Reaction of [{(arene)MCl 2 } 2 ] (arene = p-cymene, benzene, Cp*; M = Ru, Rh, Ir) with ligands L1-L3 in 1:2 metal precursor-to-ligand ratio yielded complexes such as [{(arene)MLκ 2 (N∩N) Cl}]PF 6 . All the ligands act as bidentate chelating nitrogen donors in κ 2 (N∩N) fashion while forming complexes. In vitro anti-tumour activity of complexes 2 and 10 against HT-29 (human colorectal cancer), BE (human colorectal cancer) and MIA PaCa-2 (human pancreatic cancer) cell lines and non-cancer cell line ARPE-19 (human retinal epithelial cells) revealed a comparable activity although complex 2 demonstrated greater selectivity for MIA PaCa-2 cells than cisplatin. Further studies demonstrated that complexes 3, 6, 9 and 12 induced significant apoptosis in Dalton's ascites lymphoma (DL) cells. In vivo anti-tumour activity of complex 2 on DL-bearing mice revealed a statistically significant antitumour activity (P = 0.0052). Complexes 1-12 exhibit HOMO-LUMO energy gaps from 3.31 to 3.68 eV. Time-dependent density functional theory calculations explain the nature of electronic transitions and were in good agreement with experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.