Objective. To characterize the clinical and histopathologic changes in a rat model of broad-spectrum matrix metalloproteinase (MMP)-induced musculoskeletal syndrome (MSS), and to facilitate research into the causes and treatments of MSS in humans.Methods. Male Lewis rats weighing 150-180 gm were administered 10-30 mg of the broad-spectrum MMP inhibitor marimastat over a 2-week period via surgically implanted subcutaneous osmotic pumps. The animals were monitored and scored for the onset and severity of MSS, using clinical and histologic parameters.Results. Marimastat-treated rats exhibited various clinical signs, including compromised ability to rest on their hind feet, high-stepping gait, reluctance or inability to move, and hind paw swelling. Histologically, marimastat-treated rat joints were characterized by soft tissue and bone changes, such as increased epiphyseal growth plate, synovial hyperplasia, and increased cellularity in the joint capsule and extracapsular ligaments. The severity of MSS, as judged by clinical criteria (2 blinded observers using 3 clinical parameters), paw volume, and histologic score, was nearly identical. The observed changes were indistinguishable from those reported for primate models and mimic MSS in humans.Conclusion. This simple and sensitive model of MSS is an attractive alternative for studying the pathology of MSS.
Human peripheral blood monocytes are found as two distinct populations based upon differential expression of chemokine receptors, adhesion molecules, Fc receptors, and cytokines. cDNA microarray analysis now reveals additional differences between these subsets that suggest dramatically diverse functions. One monocyte subset (CD14++CD16-) appears to be closely paired with neutrophils, and may have as its primary function the removal and recycling of apoptotic neutrophils at sites of inflammation. The other monocyte subset (CD14+CD16+) expresses numerous genes encoding proteins with antimicrobial activity and thus may be more directly involved in peripheral host defense. The production of monocytes capable of efficiently removing dying neutrophils may be necessary to prevent host tissue damage and autoimmune response induction. Therefore, species like humans that produce relatively high levels of circulating neutrophils must also produce relatively high numbers of the recycling monocytes. Conversely, species such as mice and rats that maintain relatively lower levels of circulating neutrophils require fewer recycling monocytes.
Gene transfer to chondrocytes followed by intra-articular transplantation may allow for functional modulation of chondrocyte biology and enhanced repair of damaged articular cartilage. We chose to examine the loss of chondrocytes transduced with a recombinant adenovirus containing the gene for Escherichia coli beta-galactosidase (Ad.RSVntlacZ), followed by transplantation into deep and shallow articular cartilage defects using New Zealand White rabbits as an animal model. A type I collagen matrix was used as a carrier for the growth of the transduced chondrocytes and to retain the cells within the surgically created articular defects. Histochemical analysis of matrices recovered from the animals 1, 3 and 10 days after implantation showed the continued loss of lacZ positive chondrocytes. The number of cells recovered from the matrices was also compared with the initial innoculum of transduced cells present within the matrices at the time of implantation. The greatest loss of transduced cells was observed in the first 24 h after implantation. The numbers of transduced cells present within the matrices were relatively constant between 1 and 3 days postimplantation, but had progressively declined by 10 days postimplantation. These results suggest that transduction of chondrocytes followed by intra-articular transplantation in this rabbit model may enable us to examine the biological effects of focal transgenic overexpression of proteins involved in cartilage homeostasis and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.