The human visual system appears to be capable of temporally integrating information in a video sequence in such a way that the perceived spatial resolution of a sequence appears much higher than the spatial resolution of an individual frame. While the mechanisms in the human visual system that do this are unknown, the effect is not too surprising given that temporally adjacent frames in a video sequence contain slightly different, but unique, information. This paper addresses the use of both the spatial and temporal information present in a short image sequence to create a single high-resolution video frame. A novel observation model based on motion compensated subsampling is proposed for a video sequence. Since the reconstruction problem is ill-posed, Bayesian restoration with a discontinuity-preserving prior image model is used to extract a high-resolution video still given a short low-resolution sequence. Estimates computed from a low-resolution image sequence containing a subpixel camera pan show dramatic visual and quantitative improvements over bilinear, cubic B-spline, and Bayesian single frame interpolations. Visual and quantitative improvements are also shown for an image sequence containing objects moving with independent trajectories. Finally, the video frame extraction algorithm is used for the motion-compensated scan conversion of interlaced video data, with a visual comparison to the resolution enhancement obtained from progressively scanned frames.
Accurate image expansion is important in many areas of image analysis. Common methods of expansion, such as linear and spline techniques, tend to smooth the image data at edge regions. This paper introduces a method for nonlinear image expansion which preserves the discontinuities of the original image, producing an expanded image with improved definition. The maximum a posteriori (MAP) estimation techniques that are proposed for noise-free and noisy images result in the optimization of convex functionals. The expanded images produced from these methods will be shown to be aesthetically and quantitatively superior to images expanded by the standard methods of replication, linear interpolation, and cubic B-spline expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.