Unusual data patterns or outliers can be generated because of human errors, incorrect measurements, or malicious activities. Detecting outliers is a difficult task that requires complex ensembles. An ideal outlier detection ensemble should consider the strengths of individual base detectors while carefully combining their outputs to create a strong overall ensemble and achieve unbiased accuracy with minimal variance. Selecting and combining the outputs of dissimilar base learners is a challenging task. This paper proposes a model that utilizes heterogeneous base learners. It adaptively boosts the outcomes of preceding learners in the first phase by assigning weights and identifying high‐performing learners based on their local domains, and then carefully fuses their outcomes in the second phase to improve overall accuracy. Experimental results from 10 benchmark datasets are used to train and test the proposed model. To investigate its accuracy in terms of separating outliers from inliers, the proposed model is tested and evaluated using accuracy metrics. The analyzed data are presented as crosstabs and percentages, followed by a descriptive method for synthesis and interpretation.
The emergence of the internet has made vast amounts of information available and easily accessible online. As a result, most libraries have digitized their content in order to remain relevant to their users and to keep pace with the advancement of the internet. However, these digital libraries have been criticized for using inefficient information retrieval models that do not perform relevance ranking to the retrieved results. This paper proposed the use of OKAPI BM25 model in text mining so as means of improving relevance ranking of digital libraries. Okapi BM25 model was selected because it is a probability-based relevance ranking algorithm. A case study research was conducted and the model design was based on information retrieval processes. The performance of Boolean, vector space, and Okapi BM25 models was compared for data retrieval. Relevant ranked documents were retrieved and displayed at the OPAC framework search page. The results revealed that Okapi BM 25 outperformed Boolean model and Vector Space model. Therefore, this paper proposes the use of Okapi BM25 model to reward terms according to their relative frequencies in a document so as to improve the performance of text mining in digital libraries.
Analysis of high-dimensional data, with more features () than observations () (), places significant demand in cost and memory computational usage attributes. Feature selection can be used to reduce the dimensionality of the data. We used a graph-based approach, principal component analysis (PCA) and recursive feature elimination to select features for classification from RNAseq datasets from two lung cancer datasets. The selected features were discretized for association rule mining where support and lift were used to generate informative rules. Our results show that the graph-based feature selection improved the performance of sequential minimal optimization (SMO) and multilayer perceptron classifiers (MLP) in both datasets. In association rule mining, features selected using the graph-based approach outperformed the other two feature-selection techniques at a support of 0.5 and lift of 2. The non-redundant rules reflect the inherent relationships between features. Biological features are usually related to functions in living systems, a relationship that cannot be deduced by feature selection and classification alone. Therefore, the graph-based feature-selection approach combined with rule mining is a suitable way of selecting and finding associations between features in high-dimensional RNAseq data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.