This paper presents an outline for the development and deployment of three perforating systems to address several needs of high pressure (HP) US Gulf of Mexico wells. A case study is presented, highlighting the key differences between systems, and includes comparisons between data obtained during engineering development and field deployment phases
During the development phase rigorous testing was conducted in line with API RP 19B sections 2, 3.14, and 5 to characterize the perforating systems' performance. These tests were executed to assess charge performance, system pressure rating at downhole conditions, and debris characteristics at surface conditions. Following the development testing, the systems were fielded with wellbore pressure being captured on downhole gauges to assess the perforating event response comparing to pre-deployment models. Additionally, wellbore debris recovered post-perforating was evaluated on surface.
The first system was to support an HP application that requires high flow area in heavy wall casing. This was the platform for other less traditional systems to expand upon. Utilizing high shot density and big hole (BH) charges, this system was tested to provide a system rating of up to 30 ksi at 425°F while retaining fishability in heavy wall casing. For this system, wellbore effects from perforating, such as dynamic underbalance and recovered debris, are qualitatively aligned with existing perforators.
The second system was optimized to control dynamic transient loading on the perforating string and minimize debris in HP environments. This meant the system was required to fit into a strategy of lowering dynamic structural loads on the workstring created during perforating. The system was designed to affect the pressure interactions among the gun internals, wellbore, and the formation, and control the amount of formation material inflow and debris produced by perforating. This perforating system was developed, qualified, and successfully fielded in multiple wells without any operational issues.
The third system provides increased formation penetration depth without sacrificing shot density. By using deep penetrating (DP) charges, this system is can provide penetration past drilling damage or mitigate higher formation strengths encountered at greater depths in some HP US GoM reservoirs, thus providing operators improved connectivity to the formation.
Evaluating perforating system performance, not only with lab testing but with field-gathered data, is crucial to closing the development loop for HP applications where testing is not practical due to both scale and replication of wellbore conditions. In deployment, the well conditions for the systems were analogous, highlighting the differences in data, thus providing a more complete background for operators to assess the suitability of these systems in HP applications and evaluate their perforating method to maximize production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.