In this project, a Fuzzy control system is proposed in an industrial process training module with two independent systems between them, one thermal and the other pneumatic. The control algorithm is developed in Python language v3.6 executed by a Raspberry Pi B+, both controllers depend on the error and change in error that are updated in times of 2 s and 1 s, for temperature and pressure respectively, communication with the plants uses A/D and D/A converters, the thermal Fuzzy was analyzed with three temperature references [50,100 and 150]°C, with a rise time of 191 s, 360 s and 505 s; steady state error of 5.5%, 0.7% y 0.7%, in the pneumatic system the speed of change between references is evaluated from 10 psi to 15 psi varying the activation of the compressor at the beginning of the experiments, the settling times obtained are 111 s and 106 s, with the compressor off the result is 116 s and 88 s, besides a maximum excess of 13% with inherent oscillations to the type system that are in an acceptable range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.