CRCs with MSI have a significantly better prognosis compared to those with intact mismatch repair. Additional studies are needed to further define the benefit of adjuvant chemotherapy in locally advanced tumors with MSI.
To identify risk variants for lung cancer, we conducted a multistage genome-wide association study. In the discovery phase, we analyzed 315,450 tagging SNPs in 1,154 current and former (ever) smoking cases of European ancestry and 1,137 frequency-matched, ever-smoking controls from Houston, Texas. For replication, we evaluated the ten SNPs most significantly associated with lung cancer in an additional 711 cases and 632 controls from Texas and 2,013 cases and 3,062 controls from the UK. Two SNPs, rs1051730 and rs8034191, mapping to a region of strong linkage disequilibrium within 15q25.1 containing PSMA4 and the nicotinic acetylcholine receptor subunit genes CHRNA3 and CHRNA5, were significantly associated with risk in both replication sets. Combined analysis yielded odds ratios of 1.32 (P < 1 × 10 −17 ) for both SNPs. Haplotype analysis was consistent with there being a single risk variant in this region. We conclude that variation in a region of 15q25.1 containing nicotinic acetylcholine receptors genes contributes to lung cancer risk.Lung cancer is frequently cited as a malignancy attributable solely to environmental exposures -primarily cigarette smoke. However, evidence that genetic factors influence lung cancer © 2008 Nature Publishing Group Correspondence should be addressed to C.I.A. (E-mail: camos@mdanderson.org). 6 These authors contributed equally to this work. AUTHOR CONTRIBUTIONS Texas: C.I.A. and M.R.S. conceived of this study. M.R.S. established the Texas lung cancer study. C.I.A. supervised and performed the analyses. G.M. provided oversight in manuscript development and in the conduct of genetic studies. I.P.G., Q.D., Q.Z., W.V.C. and X.G. performed statistical analyses. S.S. developed and implemented statistical procedures for joint analysis. X.W. and J. Direct evidence for a genetic predisposition to lung cancer is provided by the increased risk associated with constitutional TP53 (tumor protein p53) 4 and RB1 (retinoblastoma) 5,6 gene mutations, rare mendelian cancer syndromes such as Bloom's 7 and Werner's syndromes 8 , and strongly familial lung cancer 9 . The genetic basis of inherited susceptibility to lung cancer outside the context of these disorders is at present undefined, but a model in which high-risk alleles account for all of the excess familial risk seems unlikely. Alternatively, part of the inherited genetic risk may be caused by low-penetrance alleles. This hypothesis implies that testing for allelic association should be a powerful strategy for identifying alleles that predispose to lung cancer.We conducted a genome-wide association study (GWAS) of histologically confirmed nonsmall cell lung cancer (NSCLC) to identify common low-penetrance alleles influencing lung cancer risk. To minimize confounding effects from cigarette smoking and increase the power to detect genetic effects, we frequency matched controls to cases according to smoking behavior. We also matched controls to cases by age (within 5 year categories) and sex, and we further matched former smokers by year...
Many individuals with multiple or large colorectal adenomas, or early-onset colorectal cancer (CRC), have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple adenoma and/or CRC cases, but in no controls. The susceptibility variants appear to have high penetrance. POLD1 is also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proof-reading (exonuclease) domain of DNA polymerases ε and δ, and are predicted to impair correction of mispaired bases inserted during DNA replication. In agreement with this prediction, mutation carriers’ tumours were microsatellite-stable, but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently-described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE exonuclease domain mutations.
To identify risk variants for glioma, we conducted a meta-analysis of two genome-wide association studies by genotyping 550K tagging SNPs in a total of 1,878 cases and 3,670 controls, with validation in three additional independent series totaling 2,545 cases and 2,953 controls. We identified five risk loci for glioma at 5p15.33 (rs2736100, TERT; P = 1.50 × 10−17), 8q24.21 (rs4295627, CCDC26; P = 2.34 × 10−18), 9p21.3 (rs4977756, CDKN2A-CDKN2B; P = 7.24 × 10−15), 20q13.33 (rs6010620, RTEL1; P = 2.52 × 10−12) and 11q23.3 (rs498872, PHLDB1; P = 1.07 × 10−8). These data show that common low-penetrance susceptibility alleles contribute to the risk of developing glioma and provide insight into disease causation of this primary brain tumor.
Breast cancer is the most common cancer in women in developed countries. To identify common breast cancer susceptibility alleles, we conducted a genome-wide association study in which 582,886 SNPs were genotyped in 3,659 cases with a family history of the disease and 4,897 controls. Promising associations were evaluated in a second stage, comprising 12,576 cases and 12,223 controls. We identified five new susceptibility loci, on chromosomes 9, 10 and 11 (P = 4.6 x 10(-7) to P = 3.2 x 10(-15)). We also identified SNPs in the 6q25.1 (rs3757318, P = 2.9 x 10(-6)), 8q24 (rs1562430, P = 5.8 x 10(-7)) and LSP1 (rs909116, P = 7.3 x 10(-7)) regions that showed more significant association with risk than those reported previously. Previously identified breast cancer susceptibility loci were also found to show larger effect sizes in this study of familial breast cancer cases than in previous population-based studies, consistent with polygenic susceptibility to the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.