Abs have been shown to be protective in passive immunotherapy of tuberculous infection using mouse experimental models. In this study, we report on the properties of a novel human IgA1, constructed using a single-chain variable fragment clone (2E9), selected from an Ab phage library. The purified Ab monomer revealed high binding affinities for the mycobacterial α-crystallin Ag and for the human FcαRI (CD89) IgA receptor. Intranasal inoculations with 2E9IgA1 and recombinant mouse IFN-γ significantly inhibited pulmonary H37Rv infection in mice transgenic for human CD89 but not in CD89-negative littermate controls, suggesting that binding to CD89 was necessary for the IgA-imparted passive protection. 2E9IgA1 added to human whole-blood or monocyte cultures inhibited luciferase-tagged H37Rv infection although not for all tested blood donors. Inhibition by 2E9IgA1 was synergistic with human rIFN-γ in cultures of purified human monocytes but not in whole-blood cultures. The demonstration of the mandatory role of FcαRI (CD89) for human IgA-mediated protection is important for understanding of the mechanisms involved and also for translation of this approach toward development of passive immunotherapy of tuberculosis.
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria.
SUMMARYTumour necrosis factor (TNF)-receptor-associated periodic syndrome (TRAPS) is a hereditary autoinflammatory disorder involving autosomal-dominant missense mutations in TNF receptor superfamily 1A (TNFRSF1A) ectodomains. To elucidate the molecular effects of TRAPSrelated mutations, we transfected HEK-293 cells to produce lines stably expressing high levels of either wild-type (WT) or single mutant recombinant forms of TNFRSF1A. Mutants with single amino acid substitutions in the first cysteine-rich domain (CRD1) were produced both as full-length receptor proteins and as truncated forms lacking the cytoplasmic signalling domain (Dsig). High-level expression of either WT or mutant full-length TNFRSF1A spontaneously induced apoptosis and interleukin-8 production, indicating that the mutations in CRD1 did not abrogate signalling. Consistent with this, WT and mutant full-length TNFRSF1A formed cytoplasmic aggregates that co-localized with ubiquitin and chaperones, and with the signal transducer TRADD, but not with the inhibitor, silencer of death domain (SODD). Furthermore, as expected, WT and mutant Dsig forms of TNFRSF1A did not induce apoptosis or interleukin-8 production. However, whereas the WT full-length TNFRSF1A was expressed both in the cytoplasm and on the cell surface, the mutant receptors showed strong cytoplasmic expression but reduced cell-surface expression. The WT and mutant Dsig forms of TNFRSF1A were all expressed at the cell surface, but a proportion of the mutant receptors were also retained in the cytoplasm and co-localized with BiP. Furthermore, the mutant forms of surface-expressed Dsig TNFRSF1A were defective in binding TNF-a. We conclude that TRAPS-related CRD1 mutants of TNFRSF1A possess signalling properties associated with the cytoplasmic death domain, but other behavioural features of the mutant receptors are abnormal, including intracellular trafficking and TNF binding.
The binding of non-specific human IgM to the surface of infected erythrocytes is important in rosetting, a major virulence factor in the pathogenesis of severe malaria due to Plasmodium falciparum, and IgM binding has also been implicated in placental malaria. Here we have identified the IgM-binding parasite ligand from a virulent P. falciparum strain as PfEMP1 (TM284var1 variant), and localized the region within this PfEMP1 variant that binds IgM (DBL4β domain). We have used this parasite IgM-binding protein to investigate the interaction with human IgM. Interaction studies with domain-swapped antibodies, IgM mutants and anti-IgM mAbs showed that PfEMP1 binds to the Fc portion of the human IgM heavy chain and requires the IgM Cμ4 domain. Polymerization of IgM was shown to be crucial for the interaction because PfEMP1 binding did not occur with mutant monomeric IgM molecules. These results with PfEMP1 protein have physiological relevance because infected erythrocytes from strain TM284 and four other IgM-binding P. falciparum strains showed analogous results to those seen with the DBL4β domain. Detailed investigation of the PfEMP1 binding site on IgM showed that some of the critical amino acids in the IgM Cμ4 domain are equivalent to those regions of IgG and IgA recognised by Fc-binding proteins from bacteria, suggesting that this region of immunoglobulin molecules may be of major functional significance in host-microbe interactions. We have therefore shown that PfEMP1 is an Fc-binding protein of malaria parasites specific for polymeric human IgM, and shows functional similarities with Fc-binding proteins from pathogenic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.