While cardiovascular device-induced thrombosis is associated with negative patient outcomes, the convoluted nature of the processes resulting in a thrombus makes the full thrombotic network too computationally expensive to simulate in the complex geometries and flow fields associated with devices. A macroscopic, continuum computational model is developed based on a simplified network, which includes terms for platelet activation (chemical and mechanical) and thrombus deposition and growth in regions of low wall shear stress (WSS). Laminar simulations are performed in a two-dimensional asymmetric sudden expansion geometry and compared with in vitro thrombus size data collected using whole bovine blood. Additionally, the predictive power of the model is tested in a flow cell containing a series of symmetric sudden expansions and contractions. Thrombi form in the low WSS area downstream of the asymmetric expansion and grow into the nearby recirculation region, and thrombus height and length largely remain within 95 % confidence intervals calculated from the in vitro data for 30 min of blood flow. After 30 min, predicted thrombus height and length are 0.94 and 4.32 (normalized by the 2.5 mm step height). Importantly, the model also correctly predicts locations of thrombus deposition observed in the in vitro flow cell of expansions and contractions. As the simulation results, which rely on a greatly reduced model of the thrombotic network, are still able to capture the macroscopic behavior of the full network, the model shows promise for timely predictions of device-induced thrombosis toward optimizing and expediting the device development process.
Thrombosis and thromboembolization remain large obstacles in the design of cardiovascular devices. In this study, the temporal behavior of thrombus size within a backward-facing step (BFS) model is investigated, as this geometry can mimic the flow separation which has been found to contribute to thrombosis in cardiac devices. Magnetic resonance imaging (MRI) is used to quantify thrombus size and collect topographic data of thrombi formed by circulating bovine blood through a BFS model for times ranging between 10 and 90 min at a constant upstream Reynolds number of 490. Thrombus height, length, exposed surface area, and volume are measured, and asymptotic behavior is observed for each as the blood circulation time is increased. Velocity patterns near, and wall shear stress (WSS) distributions on, the exposed thrombus surfaces are calculated using computational fluid dynamics (CFD). Both the mean and maximum WSS on the exposed thrombus surfaces are much more dependent on thrombus topography than thrombus size, and the best predictors for asymptotic thrombus length and volume are the reattachment length and volume of reversed flow, respectively, from the region of separated flow downstream of the BFS.
Commercial mayonnaise and refrigerated ranch salad dressing were inoculated at two levels with two strains of Escherichia coli O157:H7, a non-pathogenic E. coli, and the non-fecal coliform Enterobacter aerogenes. Results showed that at the high inoculation level (>106 colony forming units [CFU]/g) in mayonnaise stored at room temperature (ca. 22°C) both strains of O157:H7 were undetected at 96 h. At the high inoculation level, all strains of coliform bacteria tested survived longer in salad dressing stored at 4°C than in mayonnaise stored at 22°C. The O157:H7 strains were still present at low levels after 17 days. The survival time in the low-level inoculum (104CFU/g) study decreased, but the survival pattern in the two products was similar to that observed in the high-level inoculum study. Slight differences in survival among strains were observed. The greater antimicrobial effect of mayonnaise may be attributable to differences in pH, water activity (aw), nutrients, storage temperature, and the presence of lysozyme in the whole eggs used in the production of commercial mayonnaise. Coliform bacteria survived longer in refrigerated salad dressing than in mayonnaise particularly at the high-level inoculum. Both mayonnaise (pH 3.91) and salad dressing (pH 4.51) did not support the growth of any of the microorganisms even though survival was observed.
Traveling-bubble cavitation inception tests were conducted in a 30.48 cm water tunnel with a Schiebe headform. A computer code was developed to statistically model cavitation inception on a Schiebe headform, consisting of a numerical solution to the Rayleigh-Plesset equation coupled to a set of trajectory equations. Using this code, trajectories and growths were computed for bubbles of varying initial sizes. An initial off-body distance was specified and the bubble was free to follow an offbody trajectory. A Monte Carlo cavitation simulation was performed in which a variety of random processes were modeled. Three different nuclei distributions were specified including one similar to that measured in the water tunnel experiment. The results compared favorably to the experiment. Cavitation inception was shown to be sensitive to nuclei distribution. Off-body effect was also found to be a significant factor in determining whether or not a bubble would cavitate. The effect of offbody trajectories on the critical bubble diameter was examined. The traditional definition of critical diameter based on the minimum pressure coefficient of the body or the measurement of liquid tension was found to be inadequate in defining cavitation inception. 10 12 14 16 Water Speed (m/sec) Fig. 1 Cavitation inception results on ITTC standard headform from various facilities (from Lindgren and Johnson, 1966)
Three-dimensional laser Doppler velocimetry measurements were acquired in a mock-circulatory loop proximal to a Björk-Shiley monostrut valve in the mitral position, and synchronous ensemble-averaging was applied to form an "average" beat. Two axial locations in the regurgitant flow region of the valve (in the minor orifice) were mapped, and maximum Reynolds shear stresses were calculated. A large spike in regurgitant flow was noted at the beginning of systole, which may be the squeeze flow phenomenon computed by other researchers. A region of sustained regurgitant flow 50 msec later was the focus of this study. Maximum velocities of approximately 3.7 mps were noted, and maximum Reynolds shear stresses of approximately 10,000 dyne/cm2 were calculated. Comparisons were made of two-dimensional (ignoring tangential component) versus three-dimensional shear stresses, and, in this case, in regions of high stress, the differences were insignificant. This suggests that the tangential component of velocity can probably be ignored in similar measurements where the tangential velocity is likely to be small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.