Summary:
Bone grafts are the second most common tissue transplanted in the United States, and they are an essential treatment tool in the field of acute and reconstructive traumatic orthopaedic surgery. Available in cancellous, cortical, or bone marrow aspirate form, autogenous bone graft is regarded as the gold standard in the treatment of posttraumatic conditions such as fracture, delayed union, and nonunion. However, drawbacks including donor-site morbidity and limited quantity of graft available for harvest make autograft a less-than-ideal option for certain patient populations. Advancements in allograft and bone graft substitutes in the past decade have created viable alternatives that circumvent some of the weak points of autografts. Allograft is a favorable alternative for its convenience, abundance, and lack of procurement-related patient morbidity. Options include structural, particulate, and demineralized bone matrix form. Commonly used bone graft substitutes include calcium phosphate and calcium sulfate synthetics—these grafts provide their own benefits in structural support and availability. In addition, different growth factors including bone morphogenic proteins can augment the healing process of bony defects treated with grafts. Autograft, allograft, and bone graft substitutes all possess their own varying degrees of osteogenic, osteoconductive, and osteoinductive properties that make them better suited for different procedures. It is the purpose of this review to characterize these properties and present clinical evidence supporting their indications for use in the hopes of better elucidating treatment options for patients requiring bone grafting in an orthopaedic trauma setting.
Summary:
In the elderly, low-energy distal femur fractures (native or periprosthetic) can be devastating injuries, carrying high rates of morbidity and mortality, comparable with the hip fracture population. Poor, osteoporotic bone quality facilitates fracture in a vulnerable anatomical region, and as a result, operative fixation can be challenging. With goals of early mobilization to reduce subsequent complication risk, using the nail plate combination technique can offer stable, balanced fixation allowing for immediate weight bearing and early mobilization. We outline the rationale, technical steps, and early clinical outcomes after nail plate combination in the treatment of osteoporotic distal femur (native or periprosthetic) fractures.
The use of fluoroscopy has become commonplace in many orthopaedic surgery procedures. The benefits of fluoroscopy are not without risk of radiation to patient, surgeon, and operating room staff. There is a paucity of knowledge by the average orthopaedic resident in terms proper usage and safety. Personal protective equipment, proper positioning, effective communication with the radiology technician are just of few of the ways outlined in this article to decrease the amount of radiation exposure in the operating room. This knowledge ensures that the amount of radiation exposure is as low as reasonably achievable. Currently, in the United States, guidelines for teaching radiation safety in orthopaedic surgery residency training is non-existent. In Europe, studies have also exhibited a lack of standardized teaching on the basics of radiation safety in the operating room. This review article will outline the basics of fluoroscopy and educate the reader on how to safe fluoroscopic image utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.