Catastrophic forgetting is a significant challenge in deep reinforcement learning (RL). To address this problem, researchers introduce the experience replay (ER) concept to complement the training of a deep RL agent. However, the buffer size, experience selection, and experience retention strategies adopted for the ER can negatively affect the agent’s performance stability, especially for complex continuous state action problems. This paper investigates how to address the stability problem using an enhanced ER method that combines a replay policy network, a dual memory, and an alternating transition selection control (ATSC) mechanism. Two frameworks were designed: an experience replay optimisation via alternating transition selection control (ERO-ATSC) without a transition storage control (TSC) and an ERO-ATSC with a TSC. The first is a hybrid of experience replay optimisation (ERO) and dual-memory experience replay (DER) and the second, which has two versions of its kind, integrates a transition storage control (TSC) into the first framework. After comprehensive experimental evaluations of the frameworks on the pendulum-v0 environment and across multiple buffer sizes, retention strategies, and sampling ratios, the reward version of ERO-ATSC with a TSC exhibits superior performance over the first framework and other novel methods, such as the deep deterministic policy gradient (DDPG) and ERO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.