While climate and energy policy targets require fundamental changes and expansions in the energy infrastructure, hydropower systems across Europe remain essential for low-carbon energy systems. With renewable fuel import prices being subject to large uncertainties, this work aims to substantiate the relationship between these fuel import prices and multireservoir hydropower systems in a climate-neutral energy system. To that end, three green hydrogen import price scenarios are combined with two aggregated modelling approaches for pan-European hydropower assets. Using the integrated energy system model SCOPE SD, the analysis shows that import prices for green hydrogen have a significant impact on European electricity generation (+ 595 GW$$_\text {el}$$
el
and + 650 TWh$$_\text {el}$$
el
/yr), domestic hydrogen production (+ 396 TWh$$_\text {th}$$
th
/yr), and water values of European hydropower assets (+ 33 % of average value in Norway). The results further indicate that the different aggregation methods only have a minor impact, suggesting that the computationally more efficient approach with up to 90% reductions in solution time provides suitable approximations of hydropower generation and flexibility in future analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.