During infection with herpes simplex virus type 1 (HSV-1), VP16 serves multiple functions, including transcriptional activation of viral immediate early genes and downregulation of the virion host shutoff protein vhs. Furthermore, VP16 has been shown to be involved in some aspect of virus assembly and/or maturation. Experiments with a VP16 null virus, 8MA, suggested that VP16 plays a direct role in virion assembly, since removal of VP16 from the HSV-1 genome results in reduced levels of encapsidated DNA and a failure to produce extracellular enveloped particles. However, VP16 null mutants display a severe translational arrest due to unrestrained vhs activity, thus complicating interpretation of these data. We examine here the role of VP16 in virion assembly and egress in the context of a vhs null background, using the virus 8MA/⌬Sma (VP16 ؊ vhs ؊ ). Comparison of 8MA and 8MA/⌬Sma with respect to viral DNA accumulation and encapsidation and accumulation of the major capsid protein, VP5, revealed that the 8MA lethal phenotype is only partially due to uncontrolled vhs activity, indicating that VP16 is required in HSV-1 virion formation. Electron microscopy confirmed these results and further showed that VP16 is required for HSV-1 egress beyond the perinuclear space. In addition, we describe the isolation and characterization of an 8MA derivative capable of propagation on Vero cells, due to second site mutations in the vhs and UL53 (gK) genes. Taken together, these results show that VP16 is required for viral egress downstream of the initial envelopment step and further underscore the importance of VP16 in controlling vhs activity within an infected cell.Herpes simplex virus type 1 (HSV-1) is a large DNA virus consisting of an icosahedral capsid surrounded by an amorphous protein layer termed the tegument and bounded by an envelope derived from host membranes (50). The tegument contains important regulatory proteins that are released into the newly infected cell following fusion of the virion envelope with the host cell plasma membrane. While the functions of many of the tegument proteins have yet to be precisely defined, several have been shown to aid in the initiation of the viral replicative cycle (50). Among these are VP16 (also known as Vmw65, ICP25, UL48, or ␣-TIF) (5,11,44,46) and the virion host shutoff protein (vhs or UL41 gene product) (21,34,48,52).VP16 is an abundant 65-kDa virion phosphoprotein that is synthesized late in infection and subsequently packaged into virions (37-39). VP16 delivered by the infecting virion acts during the earliest stages of infection to stimulate transcription of the viral immediate-early (IE) genes, thereby facilitating the onset of the lytic program of viral gene expression (reviewed in references 41 and 50). Intensive studies have shown that the C-terminal portion of VP16 is a potent transcriptional activation domain and that VP16 is targeted to the TAATGA-RATTC consensus sequence found in IE promoters through interactions with the host factors Oct-1 and HCF. Mutations tha...
Pili are one of the adhesins of Pseudomonas aeruginosa that mediate adherence to epithelial cell-surface receptors. The pili of P. aeruginosa strains PAK and PAO were examined and found to bind gangliotetraosyl ceramide (asialo-GM1) and, to a lesser extend, II3N-acetylneuraminosylgangliotetraosyl ceramide (GM1) in solid-phase binding assays. Asialo-GM1, but not GM1, inhibited both PAK and PAO pili binding to immobilized asialo-GM1 on the microtitre plate. PAO pili competitively inhibited PAK pili binding to asialo-GM1, suggesting the presence of a structurally similar receptor-binding domain in both pilus types. The interaction between asialo-GM1 and pili occurs at the pilus tip as asialo-GM1 coated colloidal gold only decorates the tip of purified pili. Three sets of evidence suggest that the C-terminal disulphide-bonded region of the Pseudomonas pilin is exposed at the tip of the pilus: (i) immunocytochemical studies indicate that P. aeruginosa pili have a basal-tip structural differentiation where the monoclonal antibody (mAb) PK3B recognizes an antigenic epitope displayed only on the basal ends of pili (produced by shearing) while the mAb PK99H, whose antigenic epitope resides in residues 134-140 (Wong et al., 1992), binds only to the tip of PAK pili; (ii) synthetic peptides, PAK(128-144)ox-OH and PAO(128-144)ox-OH, which correspond to the C-terminal disulphide-bonded region of Pseudomonas pilin are able to bind to asialo-GM1 and inhibit the binding of pili to the glycolipid; (iii) PK99H was shown to block PAK pilus binding to asialo-GM1.(ABSTRACT TRUNCATED AT 250 WORDS)
The effects of defined mutations in the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-like plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responsible for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectedly, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.
Phase-dependent invasive behavior of Bordetella pertussis was demonstrated by recovery of viable organisms from gentamicin-treated HeLa cell monolayers and by transmission electron microscopy. Several mutants of B. pertussis with TnS or TnS lac inserted into various vir-regulated genes were evaluated for differences in their invasive abilities. Mutants lacking filamentous hemagglutinin, pertussis toxin, and two as yet uncharacterized vir-regulated products had levels of invasion significantly lower than that of the parent strain BP338. In contrast, invasion by mutants lacking adenylate cyclase toxin was significantly increased compared with that of wild-type B. pertussis. This increase in invasion was eliminated when concentrations of intracellular cyclic 3'-5' AMP were stimulated by treating HeLa cells with cholera toxin or forskolin. Entry of B. pertussis occurred through a microfilament-dependent phagocytic process, as evidenced by the marked reduction in uptake following treatment of HeLa cells with cytochalasin D. Invasion was inhibited with polyclonal anti-B. pertussis and anti-filamentous hemagglutinin antisera. In addition, a monoclonal antibody against lipooligosaccharide A reduced uptake by 65.5%. The preservation of HeLa cell integrity and the limited replication of intracellular bacteria suggest that invasion may represent a means by which B. pertussis evades an active host immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.