Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.dopamine | learning and memory | Drosophila | mushroom body M emory of a momentous event persists for a long time.Whereas some forms of long-term memory (LTM) require repetitive training (1-3), a highly relevant stimulus such as food or poison is sufficient to induce LTM in a single training session (4-7). Recent studies have revealed aspects of the molecular and cellular mechanisms of LTM formation induced by repetitive training (8-11), but how a single training induces a stable LTM is poorly understood (12).Appetitive olfactory learning in fruit flies is suited to address the question, as a presentation of a sugar reward paired with odor induces robust short-term memory (STM) and LTM (6, 7). Odor is represented by a sparse ensemble of the 2,000 intrinsic neurons, the Kenyon cells (13). A current working model suggests that concomitant reward signals from sugar ingestion cause associative plasticity in Kenyon cells that might underlie memory formation (14-20). A single activation session of a specific cluster of dopamine neurons (PAM neurons) by sugar ingestion can induce appetitive memory that is stable over 24 h (19), underscoring the importance of sugar reward to the fly.The mushroom body (MB) is composed of the three different cell types, α/β, α′/β′, and γ, which have distinct roles in different phases of appetitive memories (11,(21)(22)(23)(24)(25). Similar to midbrain dopamine neurons in mammals (26,27), the structure and function of PAM cluster neurons are heterogeneous, and distinct dopamine neurons intersect unique segments of the MB lobes (19,(28)(29)(30)(31)(32)(33)(34). Further circuit dissection is thus crucial to identify candidate synapses that undergo associative modulation.By activating distinct subsets of PAM neurons for reward signaling, we found that short-and long-term memories are independently formed by two complementary subsets of PAM cluster dopamine neurons. Conditioning flies with nutritious and nonnutritious sugars revealed that the two subsets could represent different reinforcing properties: sweet taste and nutritional value of sugar....
Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60–70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100–170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this ...
A process and outcomes evaluation was conducted of a citywide literary-arts initiative designed to reduce stigma, amplify underrepresented narratives, and generate dialogue about violence. Over 4 months, students in 85 middle schools read a novel addressing mental health and violencerelated themes. As a collaboration between a public school district and public library system, the program's classroom activities emphasized dialogue, while coordinated library events supported community engagement. Students completed pre/postsurveys (total n = 1487); school program leaders (n = 39) and public librarians (n = 14) completed postsurveys. Half of student respondents reported personal encounters with violence. Most said the novel influenced their thinking; students with personal experiences of violence reported greater influence than those without. Highest rates of dialogue were seen among students who read the novel in full, and over half of postsurvey respondents wanted more dialogue opportunities. Leaders and librarians indicated that the program was smoothly integrated with existing curricula, but also offered recommendations for improved processes. Findings suggest that this intervention
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.