Spores of Bacillus anthracis are the infectious agent of anthrax. Current antibiotic treatments are limited due to resistance and patient age restrictions; thus, additional targets for therapeutic intervention are needed. One possible candidate is dihydrofolate reductase (DHFR), a biosynthetic enzyme necessary for anthrax pathogenicity. We determined the crystal structure of DHFR from B. anthracis (baDHFR) in complex with methotrexate (MTX; 1) at 2.4 Angstrom resolution. The structure reveals the crucial interactions required for MTX binding and a putative molecular basis for how baDHFR has natural resistance to trimethoprim (TMP; 2). The structure also allows insights for designing selective baDHFR inhibitors that will have weak affinities for the human enzyme. Additionally, we have found that 5-nitro-6-methylamino-isocytosine (MANIC; 3), which inhibits another B. anthracis folate synthesis enzyme, dihydropteroate synthase (DHPS), can also inhibit baDHFR. This provides a starting point for designing multi-target inhibitors that are less likely to induce drug resistance.
Developing a solid state Photosystem I (PSI) modified electrode is attractive for photoelectrochemical applications because of the quantum yield of PSI, which approaches unity in the visible spectrum. Electrodes are constructed using a Nafion film to encapsulate PSI as well as the hole-scavenging redox mediator Os(bpy)2Cl2. The photoactive electrodes generate photocurrents of 4 μA/cm(2) when illuminated with 1.4 mW/cm(2) of 676 nm band-pass filtered light. Methyl viologen (MV(2+)) is present in the electrolyte to scavenge photoelectrons from PSI in the Nafion film and transport charges to the counter electrode. Because MV(2+) is positively charged in both reduced and oxidized states, it is able to diffuse through the cation permeable channels of Nafion. Photocurrent is produced when the working electrode is set to voltages negative of the Os(3+)/Os(2+) redox potential. Charge transfer through the Nafion film and photohole scavenging at the PSI luminal surface by Os(bpy)2Cl2 depends on the reduction of Os redox centers to Os(2+) via hole scavenging from PSI. The optimal film densities of Nafion (10 μg/cm(2) Nafion) and PSI (100 μg/cm(2) PSI) are determined to provide the highest photocurrents. These optimal film densities force films to be thin to allow the majority of PSI to have productive electrical contact with the backing electrode.
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X-ray and NMR structures of PSI and Fd, respectively. Predictions of potential protein-protein interaction regions are based on experimental site-directed mutagenesis and cross-linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory to bring together regions of high energetic frustration on each of the interacting proteins. The results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. This study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies.
Conventional dye-sensitized solar cells comprise semiconducting anodes sensitized with complex synthetic organometallic dyes, a platinum counter electrode, and a liquid electrolyte. This work focuses on replacing synthetic dyes with a naturally occurring biological pigment−protein complex known as Photosystem I (PSI). Specifically, ZnO binding peptides (ZOBiP)-fused PSI subunits (ZOBiP−PsaD and ZOBiP−PsaE) and TiO 2 binding peptides (TOBiP)-fused ferredoxin (TOBiP−Fd) have been produced recombinantly from Escherichia coli. The MOBiP-fused peptides have been characterized via western blotting, circular dichroism, MALDI-TOF, and cyclic voltammetry. ZOBiP−PSI subunits have been used to replace wild-type PsaD and PsaE, and TOBiP−Fd has been chemically cross-linked to the stromal hump of PSI. These MOBiP peptides and MOBiP−PSI complexes have been produced and incubated with various metal oxide nanoparticles, showing increased binding when compared to that of wildtype PSI complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.