Snails are highly unusual among multicellular animals in that they move on a layer of costly mucus, leaving behind a trail that can be followed and utilized for various purposes by themselves or by other animals. Here we review more than 40 years of experimental and theoretical research to try to understand the ecological and evolutionary rationales for trail-following in gastropods. Data from over 30 genera are currently available, representing a broad taxonomic range living in both aquatic and terrestrial environments. The emerging picture is that the production of mucus trails, which initially was an adaptation to facilitate locomotion and/or habitat extension, has evolved to facilitate a multitude of additional functions. Trail-following supports homing behaviours, and provides simple mechanisms for self-organisation in groups of snails, promoting aggregation and thus relieving desiccation and predation pressures. In gastropods that copulate, trail-following is an important component in mate-searching, either as an alternative, or in addition to the release of water- or air-borne pheromones. In some species, this includes a capacity of males not only to identify trails of conspecifics but also to discriminate between trails laid by females and males. Notably, trail discrimination seems important as a pre-zygotic barrier to mating in some snail species. As production of a mucus trail is the most costly component of snail locomotion, it is also tempting to speculate that evolution has given rise to various ways to compensate for energy losses. Some snails, for example, increase energy intake by eating particles attached to the mucus of trails that they follow, whereas others save energy through reducing the production of their own mucus by moving over previously laid mucus trails. Trail-following to locate a prey item or a mate is also a way to save energy. While the rationale for trail-following in many cases appears clear, the basic mechanisms of trail discrimination, including the mechanisms by which many snails determine the polarity of the trail, are yet to be experimentally determined. Given the multiple functions of trail-following we propose that future studies should adopt an integrated approach, taking into account the possibility of the simultaneous occurrence of many selectively advantageous roles of trail-following behaviour in gastropods. We also believe that future opportunities to link phenotypic and genotypic traits will make possible a new generation of research projects in which gastropod trail-following, its multitude of functions and evolutionary trade-offs can be further elucidated.
Role of an identified looming-sensitive neuron in triggering a flying locust's escape. J Neurophysiol 95: 3391-3400, 2006. First published February 1, 2006 doi:10.1152/jn.00024.2006. Flying locusts perform a characteristic gliding dive in response to predatorsized stimuli looming from one side. These visual looming stimuli trigger trains of spikes in the descending contralateral movement detector (DCMD) neuron that increase in frequency as the stimulus gets nearer. Here we provide evidence that high-frequency (Ͼ150 Hz) DCMD spikes are involved in triggering the glide: the DCMD is the only excitatory input to a key gliding motor neuron during a loom; DCMD-mediated EPSPs only summate significantly in this motor neuron when they occur at Ͼ150 Hz; when a looming stimulus ceases approach prematurely, high-frequency DCMD spikes are removed from its response and the occurrence of gliding is reduced; and an axon important for glide triggering descends in the nerve cord contralateral to the eye detecting a looming stimulus, as the DCMD does. DCMD recordings from tethered flying locusts showed that glides follow high-frequency spikes in a DCMD, but analyses could not identify a feature of the DCMD response alone that was reliably associated with glides in all trials. This was because, for a glide to be triggered, the high-frequency spikes must be timed appropriately within the wingbeat cycle to coincide with wing elevation. We interpret this as flight-gating of the DCMD response resulting from rhythmic modulation of the flight motor neuron's membrane potential during flight. This means that the locust's escape behavior can vary in response to the same looming stimulus, meaning that a predator cannot exploit predictability in the locust's collision avoidance behavior.
Highlights: Plastic is not as great a threat to oceans as climate change or overfishing; Corporations and governments focus on plastic to appear 'green'; There is a focus on technology and personal choice to reduce plastic; Large-scale behavioural, economic and political changes are needed to tackle environmental issues.
Sexual size dimorphism is widespread among dioecious species but its underlying driving forces are often complex. A review of sexual size dimorphism in marine gastropods revealed two common patterns: firstly, sexual size dimorphism, with females being larger than males, and secondly females being larger than males in mating pairs; both of which suggest sexual selection as being causally related with sexual size dimorphism. To test this hypothesis, we initially investigated mechanisms driving sexual selection on size in three congeneric marine gastropods with different degrees of sexual size dimorphism, and, secondly, the correlation between male/female sexual selection and sexual size dimorphism across several marine gastropod species. Male mate choice via mucus trail following (as evidence of sexual selection) was found during the mating process in all three congeneric species, despite the fact that not all species showed sexual size dimorphism. There was also a significant and strong negative correlation between female sexual selection and sexual size dimorphism across 16 cases from seven marine gastropod species. These results suggest that sexual selection does not drive sexual size dimorphism. There 2 was, however, evidence of males utilizing a similar mechanism to choose mates (i.e. selecting a female slightly larger than own size) which may be widespread among gastropods, and in tandem with present variability in sexual size dimorphism among species, provide a plausible explanation of the observed mating patterns in marine gastropods.
High shore littorinid snails exhibit complex spatial distribution patterns, forming dense aggregations both in crevices and on crevice-free sections of rocky shores. To understand how these patterns may form, an individual-based computer simulation of littorinid behaviour, similar to those used to model social insects, was used to mimic snail movement on rocky shores. Individual littorinid movement patterns were simulated, along with chance interactions with other littorinids, their trails, crevices and any resultant decisions made by the littorinids when these interactions occurred. The simulation investigated how simple behavioural rules can predict spatial aggregation patterns and the persistence and variation of these aggregation patterns over timescales of several tidal cycles. Morisita's index of dispersal showed good agreement between the simulation and observed patterns of littorinids on-shore. Trail-following was vital in the simulation, since points where trails intersected with crevices, or points where 2 or more trails met, formed the site of aggregations. Both in the simulation and in reality, aggregations often occurred in identical positions over several tidal cycles, both within and outside crevices. This temporal predictability may be due to the persistence of mucus trails on the shore over successive tidal cycles. Removal of the influence of past mucus trails from the simulation resulted in far lower persistence of aggregations over time. The simulation, therefore, is an important tool in examining behavioural mechanisms of intertidal animals. It provides insights into how simple behaviour of grazing animals can explain complex population patterns and subsequently the community dynamics of algal-herbivore interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.