[1] At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH 4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N 2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N 2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N 2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N 2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N 2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site.
Anaerobic biodegradation of organic amendments and contaminants in aquifers can trigger secondary water quality impacts that impair groundwater resources. Reactive transport models help elucidate how diverse geochemical reactions control the spatiotemporal evolution of these impacts. Using extensive monitoring data from a crude oil spill site near Bemidji, Minnesota (USA), we implemented a comprehensive model that simulates secondary plumes of depleted dissolved O 2 and elevated concentrations of Mn 21 , Fe 21 , CH 4 , and Ca 21 over a two-dimensional cross section for 30 years following the spill. The model produces observed changes by representing multiple oil constituents and coupled carbonate and hydroxide chemistry. The model includes reactions with carbonates and Fe and Mn mineral phases, outgassing of CH 4 and CO 2 gas phases, and sorption of Fe, Mn, and H 1 . Model results demonstrate that most of the carbon loss from the oil (70%) occurs through direct outgassing from the oil source zone, greatly limiting the amount of CH 4 cycled down-gradient. The vast majority of reduced Fe is strongly attenuated on sediments, with most (91%) in the sorbed form in the model. Ferrous carbonates constitute a small fraction of the reduced Fe in simulations, but may be important for furthering the reduction of ferric oxides. The combined effect of concomitant redox reactions, sorption, and dissolved CO 2 inputs from source-zone degradation successfully reproduced observed pH. The model demonstrates that secondary water quality impacts may depend strongly on organic carbon properties, and impacts may decrease due to sorption and direct outgassing from the source zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.