Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events. O NE of the primary strengths of the genus Drosophila as a model system has been the relative ease of generating detailed cytogenetic maps. Indeed, the first definitive mapping of genes to chromosomes Genetics 179: 1601-1655 ( July 2008) was performed in Drosophila melanogaster (Bridges 1916). The subsequent discovery of polytene chromosomes in the salivary glands in this same species (Painter 1934) and their codification into fine-structure genetic/ cytogenetic maps represents perhaps one of the first forays into ''genomics.'' Polytene maps (Bridges 1935;Lefevre 1976) provided an important genetic tool for mapping genes, for detecting genetic diversity within populations, and for inferring phylogenies among related species (Dobzhansky and Sturtevant 1938;Judd et al. 1972;Ashburner and Lemeunier 1976;Lemeunier and Ashburner 1976). Sturtevant and Tan (1937) laid the groundwork for comparative genomics when they established that genes within the chromosomal arms are conserved or syntenic among species. In an insightful melding of the gene mapping and evolutionary studies, H. J. Muller (1940) proposed that the genomes of Drosophila species were subdivided into a set of homologous elements represented by chromosome arms. What Muller (1940) noted, which was subsequently elaborated on by Sturtevant and Novitski (1941), was that the presumed homologs of identified mutant alleles within a chromosome arm of D. melanogaster were also confined to a single arm in other species within the genus where mapping data were available. Using D. melanogaster as a reference, Muller proposed that each of the five major chromosome arms plus the dot chromosome be given a letter designation (A-F) and that this nomenclature be used to identify equivalent linkage groups within the genus.The an...
Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.
Herbivory is a key innovation in insects, yet has only evolved in onethird of living orders. The evolution of herbivory likely involves major behavioral changes mediated by remodeling of canonical chemosensory modules. Herbivorous flies in the genus Scaptomyza (Drosophilidae) are compelling species in which to study the genomic architecture linked to the transition to herbivory because they recently evolved from microbe-feeding ancestors and are closely related to Drosophila melanogaster. We found that Scaptomyza flava, a leaf-mining specialist on plants in the family (Brassicaceae), was not attracted to yeast volatiles in a four-field olfactometer assay, whereas D. melanogaster was strongly attracted to these volatiles. Yeast-associated volatiles, especially short-chain aliphatic esters, elicited strong antennal responses in D. melanogaster, but weak antennal responses in electroantennographic recordings from S. flava. We sequenced the genome of S. flava and characterized this species' odorant receptor repertoire. Orthologs of odorant receptors, which detect yeast volatiles in D. melanogaster and mediate critical host-choice behavior, were deleted or pseudogenized in the genome of S. flava. These genes were lost step-wise during the evolution of Scaptomyza. Additionally, Scaptomyza has experienced gene duplication and likely positive selection in paralogs of Or67b in D. melanogaster. Olfactory sensory neurons expressing Or67b are sensitive to green-leaf volatiles. Major trophic shifts in insects are associated with chemoreceptor gene loss as recently evolved ecologies shape sensory repertoires.plant-herbivore interactions | gene loss | olfaction | Drosophila melanogaster | Scaptomyza flava U nderstanding the origins and consequences of trophic shifts, especially the transition to herbivory, has been a central problem in evolutionary biology. The paleontological record suggests that evolutionary transitions to herbivory have been rare in insects (1), and the first transitions to herbivory in vertebrates occurred long after the colonization of land (2). However, species radiations result from herbivorous transitions in insects and vertebrates, suggesting that herbivory is a key innovation (3, 4). Identifying functional genomic changes associated with the evolutionary transition to herbivory could yield insight into the mechanisms that have driven their success. However, the origins of the most diverse clades of herbivorous insects are ancient and date to the Jurassic or earlier (5), limiting meaningful genomic comparisons. In contrast, herbivory has evolved more times in Diptera than in any other order (3). The Drosophilidae is an excellent system to study the evolution of herbivory from a functional genomic perspective because it includes several transitions to herbivory, and the genomic model Drosophila melanogaster (6, 7).The transition to herbivory involves adaptations in physiology (8-10), morphology (11), and behavior (12). The evolution of sensory repertoires could reinforce or even precipitate these adapt...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.