Computed tomographic imaging alone can be misleading for diagnosis of SSCD. It can overestimate the size of the dehiscence, and it can falsely detect dehiscences. Clinical symptoms and other signs must be clearly indicative before surgery, and MSCT cannot be used exclusively for the diagnosis of SSCD.
Cochlear Implants (CIs) are medical implantable devices that can restore the sense of hearing in people with profound hearing loss. Clinical trials assessing speech intelligibility in CI users have found large intersubject variability. One possibility to explain the variability is the individual differences in the interface created between electrodes of the CI and the auditory nerve. In order to understand the variability, models of the voltage distribution of the electrically stimulated cochlea may be useful. With this purpose in mind, we developed a parametric model that can be adapted to each CI user based on landmarks from individual cone beam computed tomography (CBCT) scans of the cochlea before and after implantation. The conductivity values of each cochlea compartment as well as the weighting factors of different grounding modes have also been parameterized. Simulations were performed modeling the cochlea and electrode positions of 12 CI users. Three models were compared with different levels of detail: a homogeneous model (HM), a non-patient-specific model (NPSM), and a patient-specific model (PSM). The model simulations were compared with voltage distribution measurements obtained from the backward telemetry of the 12 CI users. Results show that the PSM produces the lowest error when predicting individual voltage distributions. Given a patient-specific geometry and electrode positions, we show an example on how to optimize the parameters of the model and how to couple it to an auditory nerve model. The model here presented may help to understand speech performance variability and support the development of new sound coding strategies for CIs.
The gold standard for diagnosis of SCD has been MSCT, but CBVT may offer improvements in information content and spatial resolution at the interface of the SC and the middle cranial fossa.
CI users with greater apical stimulation made sound quality discriminations that more closely resembled those of NH controls for stimuli that contained low frequencies (< 200 Hz of information). These findings suggest that increased apical cochlear stimulation improves musical low-frequency perception, which may provide a more satisfactory music listening experience for CI users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.