Comparing independent high-throughput gene-expression experiments can generate hypotheses about which gene-expression programs are shared between particular biological processes. Current techniques to compare expression profiles typically involve choosing a fixed differential expression threshold to summarize results, potentially reducing sensitivity to small but concordant changes. We present a threshold-free algorithm called Rank–rank Hypergeometric Overlap (RRHO). This algorithm steps through two gene lists ranked by the degree of differential expression observed in two profiling experiments, successively measuring the statistical significance of the number of overlapping genes. The output is a graphical map that shows the strength, pattern and bounds of correlation between two expression profiles. To demonstrate RRHO sensitivity and dynamic range, we identified shared expression networks in cancer microarray profiles driving tumor progression, stem cell properties and response to targeted kinase inhibition. We demonstrate how RRHO can be used to determine which model system or drug treatment best reflects a particular biological or disease response. The threshold-free and graphical aspects of RRHO complement other rank-based approaches such as Gene Set Enrichment Analysis (GSEA), for which RRHO is a 2D analog. Rank–rank overlap analysis is a sensitive, robust and web-accessible method for detecting and visualizing overlap trends between two complete, continuous gene-expression profiles. A web-based implementation of RRHO can be accessed at http://systems.crump.ucla.edu/rankrank/.
In contrast to normal cells, cancer cells avidly take up glucose and metabolize it to lactate even when oxygen is abundant, a phenomenon referred to as the Warburg effect. This fundamental alteration in glucose metabolism in cancer cells enables their specific detection by Positron Emission Tomography (PET) following intravenous injection of the glucose analogue 18F-fluorodeoxy-glucose (18FDG). However, this useful imaging technique is limited by the fact that not all cancers avidly take up FDG. To identify molecular determinants of 18FDG-retention, we interogated the transcriptomes of human cancer cell lines and primary tumors for metabolic pathways associated with 18FDG radiotracer uptake. From 95 metabolic pathways that were interrogated, the glycolysis and several glycolysis-related pathways (pentose-phosphate, carbon fixation, aminoacyl-tRNA biosynthesis, one-carbon-pool by folate) showed the greatest transcriptional enrichment. This “FDG signature” predicted FDG-uptake in breast cancer cell lines and overlapped with established gene expression signatures for the “basal-like” breast cancer subtype and MYC-induced tumorigenesis in mice. Human breast cancers with nuclear MYC staining and high RNA expression of MYC target genes showed high 18FDG-PET uptake (p < 0.005). Presence of the FDG signature was similarly associated with MYC gene copy gain, increased MYC transcript levels, and elevated expression of metabolic MYC target genes in a human breast cancer genomic dataset. Together, our findings link clinical observations of glucose uptake with a pathologic and molecular subtype of human breast cancer. Further, they suggest related approaches to derive molecular determinants of radiotracer retention for other PET-imaging probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.