This study reports the optical, structural, electrical and dielectric properties of Poly (vinyl alcohol) thin films membranes with embedded ZnO nanoparticles (PVA/ZnO) obtained by the solution casting method at low temperature of deposition. Fourier Transform Infrared spectra showed the characteristics peaks, which correspond to O–H and Zn–O bonds present in the hybrid material. The X-ray diffraction patterns indicated the presence of ZnO structure into the films. The composite material showed low absorbance and a wide band of gap energy from 5.5 to 5.83 eV. The surface morphology for the thin films of PVA/ZnO was studied by Atomic Force Microscopy and Scanning Electron Microscopy. The electrical properties of the membranes were also characterized by current-voltage characteristics and the DC conductivity showed Arrhenius behavior with values of activation energy from 0.62 to 0.78 eV and maximum conductivity at 2.4 × 10−12 S/cm. The dielectric properties of the nanocomposites were measured from low to high frequencies, and the results showed a high dielectric constant (ε) in the order of 104 at low frequency and values from ε ≈ 2000 to 100 in the range of 1 KHz–1 MHz respectively. The properties of PVA/ZnO such as the high permittivity and the low temperature of processing make it a suitable material for potential applications in the development of flexible electronic devices.
Dielectric properties of barley, corn (white and yellow), sorghum, and wheat at microwave frequencies for heating purpose were analyzed. Properties were determined at 915, 2450 and 5800 MHz with the free space transmission method in the cereals at 20, 30, 40, 50 and 60°C. ε´and εBof all the cereals decreased with increasing frequency. ε´slightly increased with temperature, while ε Bremained practically constant for all the cereals in the temperature range from 20 to 60°C. Penetration depth decreased with increasing frequency for all the samples, and increased with increasing temperature at 915 MHz, except for barley. These results are useful for further microwave heating applications for the studies on cereals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.