One of the inherent problems in the use of antisense oligodeoxynucleotides to ablate gene expression in cell cultures is that the stringency of hybridization in vivo is not subject to control and may be sub-optimal. Consequently, phosphodiester or phosphorothioate antisense effectors and non-targeted cellular RNA may form partial hybrids which are substrates for RNase H. Such processes could promote the sequence dependent inappropriate effects recently reported in the literature. We have attempted to resolve this problem by using chimeric methylphosphonodiester/phosphodiester oligodeoxynucleotides. In contrast to the extensive RNA degradation observed with all-phosphodiester oligodeoxynucleotides, highly modified chimeric antisense effectors displayed negligible, or undetectable, cleavage at non-target sites without significantly impaired activity at the target site. We also note that all of the all-phosphodiester oligodeoxynucleotides tested demonstrated inappropriate effects, and that such undesirable activity could vary widely between different sequences.
A 28-mer morpholino oligonucleotide analog was designed to hybridize to 8 bases of intron 1 and extend 2 bases beyond the translation initiation codon in exon 2 of the unspliced c-myc RNA transcript. Delivery of this compound into human chronic myeloid leukemia KYO1 cells, by streptolysin O permeabilization, resulted in almost total ablation of the 65 kDa c-MYC protein expression for at least 24 hours after treatment. An unexpected band with SDS-PAGE electrophoretic mobility indicating a protein of about 47 kDa was apparent on the 24-hour western blots that were developed using antibodies that recognize MYC protein C terminal epitopes. No inhibition of the approximately 2400 nt c-myc mRNA expression was observed by northern hybridization, a result of the inability of morpholino analogs to direct the activity of ribonuclease H. In fact, high molecular weight c-myc RNA species were found to have accumulated in antisense-treated KYO1 cells. Control sense and scrambled antisense morpholino analogs did not inhibit MYC protein expression or induce the appearance of the anomalous RNA and protein bands. Molecular analyses by RT-PCR and sequencing revealed that the morpholino antisense effector had (1) inhibited splicing of the c-myc pre-mRNA, (2) induced missplicing of the pre-mRNA, and (3) inhibited translation of normal spliced c-myc mRNA. Identical results were obtained with acute promyelocytic leukemia, acute lymphoblastic leukemia, and histiocytic lymphoma cell lines.
It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.
Mcl-1 is a member of the Bcl-2 protein family, which has been shown to delay apoptosis in transfection and/or overexpression experiments. As yet no gene knockout mice have been engineered, and so there is little evidence to show that loss of Mcl-1 expression is sufficient to trigger apoptosis. U937 cells constitutively express the antiapoptotic protein Bcl-2; but during differentiation, in response to the phorbol ester PMA (phorbol 12 β-myristate 13 α-acetate), Mcl-1 is transiently induced. The purpose of this investigation was to determine the functional role played by Mcl-1 in this differentiation program. Mcl-1 expression was specifically disrupted by chimeric methylphosphonate/phosphodiester antisense oligodeoxynucleotides to just 5% of control levels. The depletion of Mcl-1 messenger RNA (mRNA) and protein was both rapid and specific, as indicated by the use of control oligodeoxynucleotides and analysis of the expression of otherBCL2 family members and PMA-induced tumor necrosis factor–α (TNF-α). Specific depletion of Mcl-1 mRNA and protein, in the absence of changes in cellular levels of Bcl-2, results in a rapid entry into apoptosis. Levels of the proapoptotic protein Bax remained unchanged during differentiation, while Bak expression doubled within 24 hours. Apoptosis was detected within 4 hours of Mcl-1 antisense treatment by a variety of parameters including a novel live cell imaging technique allowing correlation of antisense treatment and apoptosis in individual cells. The induction of Mcl-1 is required to prevent apoptosis during differentiation of U937 cells, and the constitutive expression of Bcl-2 is unable to compensate for the loss of Mcl-1.
During the course of a study aimed at improving antisense oligodeoxynucleotide-mediated ex vivo bone marrow purging of patients suffering from chronic myeloid leukemia (CML), the properties of a number of antisense structures intended to reduce the expression of c-myc, mutant p53, and bcr-abl mRNAs and proteins were examined. The majority of the antisense oligodeoxynucleotides were designed to be capable of directing ribonuclease H (RNase H) cleavage of their target mRNAs. Streptolysin O (SLO) reversible permeabilization was used to deliver the oligodeoxynucleotides into the CML line KYO-1. We found that the efficiency and specificity of antisense oligonucleotide-induced reductions of target protein expression depended on target protein half-life, the oligonucleotide structure, and the specific sequence within the target mRNA. Transient reductions of c-myc mRNA and protein were achieved with a chimeric methylphosphonate-phosphodiester oligodeoxynucleotide antisense to the initiation codon, but cell proliferation was unaffected. In contrast, a chimeric oligodeoxynucleotide of similar structure targeted to an alternative site in the coding region of c-myc mRNA reduced target mRNA and protein levels for over 24 hours and halted cell proliferation. Chimeric methylphosphonate-phosphodiester oligodeoxynucleotide antisense to a point mutation in KYO-1 p53 mRNA efficiently reduced target mRNA expression, but only small, transient reductions in p53 protein expression were observed. However, a chimeric methylphosphonate-phosphorothioate oligodeoxynucleotide targeted to the same site reduced p53 protein to 30% of control levels over a 48-hour period. BCR-ABL protein expression was unaffected by chimeric oligodeoxynucleotides targeted to the breakpoint in bcr-abl mRNA, even when mRNA levels at early times were substantially reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.