Atmospheric optical turbulence can be a significant source of image degradation, particularly in long range imaging applications. Many turbulence mitigation algorithms rely on an optical transfer function (OTF) model that includes the Fried parameter. We present anisoplanatic tilt statistics for spherical wave propagation. We transform these into 2D autocorrelation functions that can inform turbulence modeling and mitigation algorithms. Using these, we construct an OTF model that accounts for image registration. We also propose a spectral-ratio Fried parameter estimation algorithm that is robust to camera motion and requires no specialized scene content or sources. We employ the Fried parameter estimation and OTF model for turbulence mitigation. A numerical wave-propagation turbulence simulator is used to generate data to quantitatively validate the proposed methods. Results with real camera data are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.