In dividing cells, the two aims a gene therapeutic approach should accomplish are efficient nuclear delivery and retention of therapeutic DNA. For stable transgene expression, therapeutic DNA can either be maintained by somatic integration or episomal persistence of which the latter approach would diminish the risk of insertional mutagenesis. As most monosystems fail to fulfill both tasks with equal efficiency, hybrid-vector systems represent promising alternatives. Our hybrid-vector system synergizes high-capacity adenoviral vectors (HCAdV) for efficient delivery and the scaffold/matrix attachment region (S/MAR)–based pEPito plasmid replicon for episomal persistence. After proving that this plasmid replicon can be excised from adenovirus in vitro, colony forming assays were performed. We found an increased number of colonies of up to sevenfold in cells that received the functional plasmid replicon proving that the hybrid-vector system is functional. Transgene expression could be maintained for 6 weeks and the extrachromosomal plasmid replicon was rescued. To show efficacy in vivo, the adenoviral hybrid-vector system was injected into C57Bl/6 mice. We found that the plasmid replicon can be released from adenoviral DNA in murine liver resulting in long-term transgene expression. In conclusion, we demonstrate the efficacy of our novel HCAdV-pEPito hybrid-vector system in vitro and in vivo.
The Sleeping Beauty (SB) transposase system for somatic integration offers great potential for in vivo gene therapeutic applications and genome engineering. Until recently, however, efficacy of SB transposase as a gene transfer vector especially in large animals was lacking. Herein, we report about the newest viral vector development for delivery of the SB transposase system into large mammals. Over the past decade various hyperactive versions of SB transposase and advanced adenovirus vectors enabling efficient and safe delivery of transgenes in vivo were developed. Already several years ago it was demonstrated that adenovirus vectors can be used for delivery of the SB transposase system into murine liver. Our newest study showed for the first time that a hyperactive transposase system delivered by high-capacity adenoviral vectors can result in somatic integration of exogenous DNA in canine liver, facilitating stabilized transgene expression and phenotypic correction for up to three years in a canine model of human disease. In this review we discuss safety issues and further improvements of this adenovirus based hybrid vector system for somatic integration. In the future this approach paves new paths towards the possible cure of human genetic diseases and novel strategies for in vivo genome engineering in large mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.