Hydrophilic interaction chromatography (HILIC) provides a complementary separation mode to RPLC and thus has been gaining increased utilization in LC-MS/MS based quantitative bioanalysis. It has proven to be a powerful tool for separation of polar compounds and has afforded increased selectivity, higher sensitivity, and improved efficiency for quantitation of drug and their metabolites in complex biological matrices. Practical knowledge has been gained for some of the challenges with HILIC applications and effective remedies have been adopted to overcome these challenges. Due to its orthogonality to RPLC, HILIC has been coupled with RP sample preparation or separation techniques, either off-line or on-line to achieve better assay selectivity. The low back-pressure with HILIC enables fast separations under higher flow rates. Small particle columns can be operated under HILIC conditions with regular system back-pressure, eliminating the requirement for ultra-high-pressure liquid chromatographic systems. Matrix effects under HILIC have also been systematically investigated. Effective approaches to reduce or eliminate matrix effects have included optimizing sample preparation, modifying chromatographic conditions, and/or using valve-switching techniques. Finally, the utilization of HILIC is not limited to quantitation of polar drugs and their metabolites, but extended to quantitation of relatively non-polar compounds, peptides and biomarkers.
Glycosylation is one of the most important post-translational modifications to mammalian proteins. Distribution of different glycoisoforms of certain proteins may reflect disease conditions and, therefore, can potentially be utilized as biomarkers. Apolipoprotein C3 (ApoC3) is one of the many plasma glycoproteins extensively studied for association with disease states. ApoC3 exists in three main glycoisoforms, including ApoC3-1 and ApoC3-2, which contain an O-linked carbohydrate moiety consisting of three and four monosaccharide residues, respectively, and ApoC3-0 that lacks the entire glycosylation chain. Changes in the ratio of different glycoisoforms of ApoC3 have been observed in pathological conditions such as kidney disease, liver disease, and diabetes. They may provide important information for diagnosis, prognosis, and evaluation of therapeutic response for metabolic conditions. In this current work, a liquid chromatography (LC)-high-resolution (HR) time-of-flight (TOF) mass spectrometry (MS) method was developed for relative quantitation of different glycoisoforms of intact ApoC3 in human plasma. The samples were processed using a solid-phase extraction (SPE) method and then subjected to LC-full scan HRMS analysis. Isotope peaks for each targeted glycoisoform at two charge states were extracted using a window of 50 mDa and integrated into a chromatographic peak. The peak area ratios of ApoC3-1/ApoC3-0 and ApoC3-2/ApoC3-0 were calculated and evaluated for assay performance. The results indicated that the ratio can be determined with excellent reproducibility in multiple subjects. It has also been observed that the ratios remained constant in plasma exposed to room temperature, freeze-thaw cycles, and long-term frozen storage. The method was applied in preliminary biomarker research of diabetes by analyzing plasma samples collected from normal, prediabetic, and diabetic subjects. Significant differences were revealed in the ApoC3-1/ApoC3-0 ratio and in the ApoC3-2/ApoC3-0 ratio among the three groups. The workflow of intact protein analysis using full scan HRMS established in this current work can be potentially extended to relative quantitation of other glycosylated proteins. To our best knowledge, this is the first time that a systematic approach of relative quantitation of targeted intact protein glycoisoforms using LC-MS has been established and utilized in biomarker research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.