Short-chain fatty acid (SCFA) transport across the colon may occur by nonionic diffusion and/or via apical membrane SCFA−/[Formula: see text]exchange. To examine the relative importance of these processes, stripped segments of rat ( Ratus ratus) proximal and distal colon were studied in Ussing chambers, and the unidirectional fluxes of radiolabeled SCFA butyrate, propionate, or weakly metabolized isobutyrate were measured. In N-2-hydroxyethylpiperazine- N′-2-ethanesulfonic acid (HEPES) or 1 or 5 mM [Formula: see text] Ringer, decreases in mucosal pH stimulated mucosal-to-serosal flux ( J m→s) of all SCFA, decreases in serosal pH stimulated serosal-to-mucosal flux ( J s→m), and bilateral pH decreases stimulated both fluxes equally. These effects were observed whether the SCFA was present on one or both sides of the tissue, in both proximal and distal colon, in the absence of luminal Na+, and in the presence of either luminal or serosal ouabain. Changes in intracellular pH or intracellular [[Formula: see text]] did not account for the effects of extracellular pH. Luminal Cl− removal, to evaluate the role of apical membrane Cl−/SCFA−exchange, had no effect on J m→s but decreased J s→m 32% at pH 6.5 and 22% at 7.2. Increasing SCFA concentration from 1 to 100 mM, at pH 6.4 or 7.4, caused a linear increase in J m→s. We conclude that SCFA are mainly transported across the rat colon by nonionic diffusion.
Butyrate stimulates salt absorption in mammalian colon. We examined whether butyrate also affects Cl- secretion. Mucosal segments of distal colon of male Sprague-Dawley rats and T84 cells were studied in Ussing chambers. In control colon, 1 mM dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) increased short-circuit current (Isc) and serosal-to-mucosal Cl- flux (JsmCl) by 3.2 +/- 0.8 and 2.9 +/- 0.8 mueq.cm-2.h-1, respectively. Mucosal or serosal 25 mM butyrate prevented DBcAMP-induced increases in Isc and JsmCl. Four and eight millimolar butyrate caused half-maximal inhibition of the increases in JsmCl and Isc, respectively. Butyrate also inhibited basal JsmCl (by 2.0 +/- 0.4 mueq.cm-2.h-1) but not carbachol-mediated Cl- secretion. The relative inhibitory potency at 25 mM of other short-chain fatty acids (SCFA) paralleled their degree of cellular metabolism: butyrate > acetate = propionate > isobutyrate. At 25 mM, all SCFA reduced mucosal intracellular pH (pHi) transiently by 0.1 pH unit. In intact T84 cells, 50 mM butyrate inhibited the DBcAMP-induced rise in Isc by 55%. In T84 cells with nystatin-permeabilized basolateral membranes, butyrate inhibited the increase in Isc by 82%. We conclude that butyrate inhibits basal and cAMP-mediated Cl- secretion by a mechanism independent of pHi, possibly located at the apical membrane.
In rat ileum and colon, apical membrane Cl(-)/HCO(3)(-) exchange and net Cl(-) absorption are stimulated by increases in Pco(2) or [HCO(3)(-)]. Because changes in Pco(2) stimulate colonic Na(+) absorption, in part, by modulating vesicular trafficking of the Na(+)/H(+) exchanger type 3 isoform to and from the apical membrane, we examined whether changes in Pco(2) affect net Cl(-) absorption by modulating vesicular trafficking of the Cl(-)/HCO(3)(-) exchanger anion exchanger (AE)1. Cl(-) transport across rat distal ileum and colon was measured in the Ussing chamber, and apical membrane protein biotinylation of these segments and Western blots of recovered proteins were performed. In colonic epithelial apical membranes, AE1 protein content was greater at Pco(2) 70 mmHg than at Pco(2) 21 mmHg but was not affected by pH changes in the absence of CO(2). AE1 was internalized when Pco(2) was reduced and exocytosed when Pco(2) was increased, and both mucosal wortmannin and methazolamide inhibited exocytosis. Wortmannin also inhibited the increase in colonic Cl(-) absorption caused by an increase in Pco(2). Increases in Pco(2) stimulated ileal Cl(-) absorption, but wortmannin was without effect. Ileal epithelial apical membrane AE1 content was not affected by Pco(2). We conclude that CO(2) modulation of colonic, but not ileal, Cl(-) absorption involves effects on vesicular trafficking of AE1.
We studied the functional importance of the colonic guanylyl cyclase C (GCC) receptor in GCC receptor-deficient mice. Mice were anesthetized with pentobarbital sodium, and colon segments were studied in Ussing chambers in HCO3- Ringer under short-circuit conditions. Receptor-deficient mouse proximal colon exhibited similar net Na+ absorption, lower net Cl- absorption, and a negative residual ion flux (J(R)), indicating net HCO3- absorption compared with that in normal mice. In normal mouse proximal colon, mucosal addition of 50 nM Escherichia coli heat-stable enterotoxin (STa) increased the serosal-to-mucosal flux of Cl- (J(s-->m)(Cl)) and decreased net Cl- flux (J(net)(Cl)) accompanied by increases in short-circuit current (I(sc)), potential difference (PD), and tissue conductance (G). Serosal STa had no effect. In distal colon neither mucosal nor serosal STa affected ion transport. In receptor-deficient mice, neither mucosal nor serosal 500 nM STa affected electrolyte transport in proximal or distal colon. In these mice, 1 mM 8-bromo-cGMP produced changes in proximal colon J(s-->m)(Cl) and J(net)(Cl), I(sc), PD, G, and J(R) similar to mucosal STa addition in normal mice. We conclude that the GCC receptor is necessary in the mouse proximal colon for a secretory response to mucosal STa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.